
Actuarial Research Centre (ARC) 

 

PhD studentship output 

The Actuarial Research Centre (ARC) is the Institute and Faculty of Actuaries’ network of actuarial researchers around the world. 

The ARC seeks to deliver research programmes that bridge academic rigour with practitioner needs by working collaboratively with 

academics, industry and other actuarial bodies. 

The ARC supports actuarial researchers around the world in the delivery of cutting-edge research programmes that aim to address 

some of the significant challenges in actuarial science. 



,

Multinomial VaR Backtests

Yen H. Lok

Acknowledgement:
Alexander J. McNeil, Michael Gordy and Marie Kratz.

Heriot Watt University
12 Jan 2017

Yen H. Lok Multinomial VaR Backtests 12 Jan 2017 1 / 21



,

Overview

1 The regulatory background

2 VaR, spectral risk measures and expected shortfall

3 Binomial and multinomial tests

4 Simulation Studies

5 Historical simulation model

6 Spectral test for realized p-value

7 Summary

8 Reference

Yen H. Lok Multinomial VaR Backtests 12 Jan 2017 2 / 21



,

Fundamental Review of the Trading Book (FRTB)

In order to be approved for an internal-model approach, banks is required to:
Conduct regular backtesting and P&L attribution programmes.
Backtesting requirements are based on comparing each desk’s 1-day
static value-at-risk measure (using the most recent 12 months’ data) at
both the 97.5th and 99th percentile to the daily trading outcome.

Additionally, banks may be required to:
Testing carried out for longer periods than required for the regular
backtesting programme (eg three years); or
Testing carried out using the entire forecasting distribution. For example
the bank could be required to use report the following:

(i) A daily ES calibrated to 97.5th level;
(ii) The daily P&L for the desk; and
(iii) The p-value for the P&L on each day for each desk.
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Value-at-Risk (VaR)

The Value at Risk (VaR) is defined as the generalized inverse of the
forecast model F , given by

VaRα := F←(α) = inf{l ∈ R : F (l) > α}.

When the forecast distribution is continuous, the VaR is simply the
ordinary inverse of the forecast distribution.
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Spectral risk measures and expected shortfall

A Spectral Risk MeasureMg with an admissible risk spectrum g is
defined as

Mg :=

∫ 1

0
g(u) VaRu du.

Spectral Risk Measures are weighted integrals of the VaR, where the
weight function g is required to satisfy certain constraints.
We say that g is an admissible risk spectrum if

i g is non-negative
ii
∫ 1

0 g(u)du = 1
iii g is non-decreasing

The Expected Shortfall, ESα, is defined as

ESα :=
1

1− α

∫ 1

α

VaRu du,

is a special case of Spectral Risk Measure, with g(u) = 1
1−α I{α≤u≤1}, and

share the properties of Spectral Risk Measures.
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Binomial score test

We denote Lt as the realized loss at time t , and refer to the event
{Lt > VaRα} as a VaR exception at level α.
We define the exception process at level α to be the process
It,α := I{Lt>VaRα} for t = 1, . . . ,n.
When the losses Lt have distribution F , assuming that F is continuous, it
is well known (Christoffersen, 1998) that the sequence (It,α)t=1,...,n should
satisfy:

the unconditional coverage hypothesis, E(It,α) = 1− α for ∀t , and
the independence hypothesis, It,α is independent of Is,α for s 6= t .

A test for the unconditional coverage hypothesis is the binomial score test

Zα :=

∑n
t=1 It,α − n(1− α)√

nα1(1− α)
,

which is compared with a standard normal distribution.
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Testing VaR at multiple levels

For a series of VaRα, at a series of ordered levels α = (α1, . . . , αN), with
α0 = 0 and αN+1 = 1, we define the exception indicator at the level αj at
time t by

It,αj := I{Lt>VaRαj }.

We define Xt =
∑N

j=1 It,αj which counts the number of VaR levels that are
breached. The sequence (Xt ) should satisfy:

the unconditional coverage hypothesis, P(Xt ≤ j) = αj+1, j = 0, . . . ,N for ∀t ,
and
the independence hypothesis, Xt is independent of Xs for s 6= t .

We now define observed cell counts by

Oj =
n∑

t=1

I{Xt=j}, j = 0,1 . . . ,N,

then the random vector (O0, . . . ,ON) should follow the multinomial
distribution

(O0, . . . ,ON) ∼ MN(n, (α1 − α0, . . . , αN+1 − αN)) .

Yen H. Lok Multinomial VaR Backtests 12 Jan 2017 7 / 21



,

Pearson chi-squared and Nass test

A well known test for the multinomial distribution is the Pearson
chi-squared test

SN =
N∑

j=0

(Oj+1 − n(αj+1 − αj ))2

n(αj+1 − αj )
,

where under the null hypothesis, SN is asymptotically χ2
N distributed.

It is well known that the accuracy of this test decreases with increasing N.
Nass (1959) studied an improved approximation to the distribution of the
statistic SN , using the r.v. cSN , where

c SN ∼ χ2
ν , with E(c SN) = v and var(c SN) = 2ν.

Pearson (1932) has shown that

E(SN) = N , and var(SN) = 2N − N2 + 4N + 1
n

+
1
n

N∑
j=0

1
αj+1 − αj

.

The Nass test offers an appreciable improvement over the chi-square test
when cell probabilities are small.
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Probit Normal LRT

The LRT statistic for a general multinomial test is given by

S̃N = 2
N∑

j=0

Oj ln

(
θ̂j+1 − θ̂j

αj+1 − αj

)
,

where θ̂j+1 − θ̂j = Oj/n.
When Oj is zero for some j , the test statistic is undefined.
We consider a general model in which the parameters are given by

θj = Φ

(
Φ−1(αj )− µ

σ

)
, j = 1, . . . ,N,

where µ ∈ R, σ > 0 and Φ denotes the standard normal distribution
function. We test the null hypothesis H0 : µ = 0 and σ = 1 against the
alternative H1 : µ 6= 0 or σ 6= 1.

θ̂j+1 − θ̂j = Φ

(
Φ−1(αj+1)− µ̂

σ̂

)
− Φ

(
Φ−1(αj )− µ̂

σ̂

)
,

where µ̂ and σ̂ are the MLEs under H1, and the test statistic S̃N is
asymptotically χ2

2 distributed.
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Experimental design

In each experiment we generate a total dataset of n values from the true
distribution G.
We consider the cases when G is normal, Student distributions with 5
and 3 degrees of freedom (t5 and t3) which have moderately heavy and
heavy tails respectively, and the skewed Student distribution
of Fernandez & Steel (1998) with 3 degrees of freedom and a skewness
parameter γ = 1.2 (denoted st3). We normalized G to have mean zero
and unit variance.
The forecast distribution F is set to be the standard normal distribution,
hence no parameter estimation is required.
The following colour coding is used: green indicates good results (≤ 6%
for the size; ≥ 70% for the power); red indicates poor results (≥ 9% for
the size; ≤ 30% for the power); dark red indicates very poor results
(≥ 12% for the size; ≤ 10% for the power).
The experiment is repeated 10,000 times to determine rejection rates.
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Multinomial tests Size and power

test Pearson Nass LRT

G n | N 1 4 8 1 4 8 1 4 8

Normal 250 3.9 5.6 8.5 3.9 5.0 4.7 7.5 6.5 6.5
500 3.9 5.2 6.6 3.9 4.7 4.7 5.9 5.5 5.6
1000 5.0 5.0 5.6 5.0 4.7 4.9 4.1 5.5 5.8

t5 250 4.1 14.1 20.8 4.1 12.8 14.1 6.9 15.8 21.6
500 5.2 22.1 28.4 5.2 20.5 24.5 6.5 26.9 36.6
1000 6.9 40.2 48.2 6.9 39.5 46.2 5.2 46.4 61.8

t3 250 3.6 13.7 21.1 3.6 12.1 14.8 10.3 24.4 35.4
500 4.8 25.2 32.7 4.8 22.4 28.7 9.5 44.2 58.6
1000 9.9 55.6 62.9 9.9 54.1 60.3 9.7 75.4 87.7

st3 250 5.4 28.8 40.0 5.4 26.3 30.5 8.0 33.5 46.5
500 6.9 50.7 60.6 6.9 47.6 56.2 7.9 59.3 73.6
1000 9.5 83.0 89.1 9.5 82.3 88.1 6.9 88.1 95.3

Table: Estimated size and power of three different types of multinomial test (Pearson,
Nass, likelihood-ratio test (LRT)) based on exceptions of N levels. Results are based
on 10000 replications. αj = 0.975 + j/N(1− 0.975), j = 0, . . . ,N.
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Binomial vs multinomial

G n | test Bin (0.99) Pearson (4) Nass (4) LRT (4) LRT (8)

Normal 250 4.0 5.6 5.0 6.5 6.5
500 3.7 5.2 4.7 5.5 5.6
1000 3.8 5.0 4.7 5.5 5.8

t5 250 17.7 14.1 12.8 15.8 21.6
500 22.4 22.1 20.5 26.9 36.6
1000 33.0 40.2 39.5 46.4 61.8

t3 250 13.5 13.7 12.1 24.4 35.4
500 16.2 25.2 22.4 44.2 58.6
1000 22.3 55.6 54.1 75.4 87.7

st3 250 31.2 28.8 26.3 33.5 46.5
500 44.2 50.7 47.6 59.3 73.6
1000 66.2 83.0 82.3 88.1 95.3

Table: Comparison of estimated size and power of the binomial score test with
α = 0.99 and Pearson, Nass and LRT with N = 4 and LRT with N = 8. Results are
based on 10000 replications

Yen H. Lok Multinomial VaR Backtests 12 Jan 2017 12 / 21



,

Historical simulation model

We now consider the industry modeller who uses the empirical
distribution function by forming standard empirical quantile estimates, a
method known as historical simulation in industry.
We mimic the procedure used in practice where models are continually
updated to use the latest market data. We assume that the estimated
model is updated every 10 steps; if these steps are interpreted as trading
days this would correspond to every two trading week.
To make the rolling estimation procedure clear, in each experiment we
generate a total dataset of n + n2 values from the true distribution G. The
window size is n2, where the modeller begin by using the data L1, . . . ,Ln2

to form their model F , and make the realized p-values estimates
Un2+i = F (Ln2+i ), for i = 1, . . . ,10.
The modeller then roll the dataset forward 10 steps and use the data
L11, . . . ,Ln2+10 to make realized p-values estimates
Un2+10+i = F (Ln2+10+i ), for i = 1, . . . ,10; in total the models are thus
re-estimated n/10 times.
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Accuracy of historical simulation

n2 F | results Bias MAE By10 By25 By33

250 Normal -2.7 7.0 18.9 0.2 0.0
t5 -0.1 12.4 28.3 2.8 0.2
t3 5.0 19.5 31.1 7.8 1.8
st3 4.5 20.6 33.5 9.7 2.9

500 Normal -0.9 4.9 6.0 0.0 0.0
t5 2.7 9.4 13.1 0.1 0.0
t3 8.6 16.0 16.0 1.1 0.1
st3 8.7 16.8 17.8 1.7 0.1

1000 Normal 0.1 3.5 1.0 0.0 0.0
t5 4.1 7.4 3.6 0.0 0.0
t3 10.5 13.6 5.3 0.1 0.0
st3 11.1 14.5 5.6 0.0 0.0

Table: Bias and mean absolute error (MAE) (both expressed as percentages) of
standard empirical estimator of 97.5% expected shortfall for different sample sizes and
different distributions. By10, By25 and by33 give percentage of estimates
underestimating expected shortfall by 10%, 25% or 33.3% respectively. Results are
based on 10,000 replications.
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Multinomial tests historical simulation rejection rate

n2 250 500

G n | Test B99 P4 N4 L4 L8 B99 P4 N4 L4 L8

Normal 250 5.6 7.4 6.6 4.3 3.9 3.7 5.2 5.0 6.3 6.2
500 3.7 6.1 5.8 2.0 1.5 1.6 3.7 3.0 2.9 2.8
1000 2.7 10.2 9.7 1.2 1.0 0.2 2.3 2.1 1.6 0.2

t5 250 6.2 8.0 7.5 3.9 4.4 3.3 5.3 4.8 4.8 5.2
500 2.8 6.2 5.5 1.9 1.9 1.8 4.4 4.1 3.6 3.2
1000 2.4 11.4 10.9 1.4 1.3 0.2 2.6 2.4 2.0 0.8

t3 250 5.7 6.9 6.3 4.0 4.5 2.5 5.8 5.7 5.7 5.6
500 2.4 5.8 5.1 1.1 1.2 1.7 2.9 2.6 3.5 2.0
1000 2.6 10.6 10.0 1.6 0.7 0.3 1.9 1.7 1.8 0.8

st3 250 6.1 8.6 8.2 4.3 4.5 2.8 6.0 5.5 6.2 6.2
500 2.3 6.3 5.4 1.6 1.2 2.2 4.5 3.9 3.9 2.1
1000 3.5 11.8 11.1 0.8 0.7 0.5 2.1 2.1 1.7 1.2

Table: Rejection rates for Historical Simulation method with various two-sided
multinomial tests in the static backtesting experiment. Models are refitted after 10
days. Results are based on 1000 replications.
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Realized p-value

We define the realized p-value, which we denote by Ut , as the probability
of observing a realized loss no more extreme than Lt using the forecast
model F , i.e. Ut := F (Lt ).
The transformation F (Lt ) is also known as the Rosenblatt transformation,
where under the null hypothesis, Ut is i.i.d. uniformly distributed in the
interval (0,1).
Assuming that F is continuous, the realized p-value contains sufficient
information to test the VaR exception process at all levels, since

It,α = I{Lt>VaRα} = I{Ut>α} .
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Spectral test for realized p-value

We borrow ideas from Costanzino & Curran (2015), which proposed to
test the Spectral Risk Measures by looking at a weighted integral of VaR
exceptions, where they define

Wg,t :=

∫ 1

0
g(u)I{Lt>VaRu}du,

with g being the admissible risk spectrum of the Spectral Risk Measure of
interest.
Since the event {Lt > VaRα} is same as the event {Ut > α}, we have that

Wg,t =

∫ 1

0
g(u)I{Ut>u}du.

We can construct a Z-test for Wg,t , where the Z-test statistic is given by

Zg :=

√
n
σ2

g

(
µ̂g − µg

)
,

where µ̂g = 1
n

∑n
t=1 Wg,t , and µg and σ2

g is the mean and variance of Wg,t
under H0.
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Spectral test at different weight functions

Figure: The uniform, linear, and exponential weight functions, re scaled to unit area, in
the interval (0.975,1).
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Spectral tests historical simulation rejection rate

n2 250 500

G n | Test SP.U SP.L SP.E100 SP.E200 SP.U SP.L SP.E100 SP.E200

Normal 250 5.1 6.9 7.3 11.4 6.1 6.6 6.5 7.7
500 2.7 5.1 5.3 9.9 3.8 4.8 4.8 6.3
1000 1.8 5.3 6.4 16.6 1.0 1.5 1.7 3.6

t5 250 5.4 7.1 8.0 11.2 4.6 6.0 6.5 8.6
500 2.3 4.4 5.5 9.0 4.2 4.7 4.9 6.5
1000 2.0 4.7 6.8 15.6 0.7 1.1 1.8 4.2

t3 250 4.9 7.3 8.0 12.1 5.1 5.7 5.9 8.2
500 2.5 4.9 5.7 12.2 2.8 3.6 4.1 6.0
1000 2.7 5.9 7.6 16.7 0.8 1.5 1.6 3.9

st3 250 6.8 8.3 8.9 13.6 4.8 4.9 4.9 8.2
500 3.1 5.3 5.9 11.6 3.7 4.8 4.8 6.3
1000 2.7 5.5 7.2 17.2 1.1 2.1 2.3 3.7

Table: Rejection rates for Historical Simulation method with various two-sided spectral
tests in the static backtesting experiment. Models are refitted after 10 days. Results
are based on 1000 replications.
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Summary

We have look at binomial test for testing a single VaR and multinomial
test for testing VaR at multiple levels.
Multinomial tests are more powerful than the binomial test, with LRT
having the best performance.
Multinomial tests are not able to detect underestimation error of historical
simulation model.
Spectral tests with more emphasis on the tail can detect underestimation
error of historical simulation model better.
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