Funding Liquidity Risk

Iain Ritchie
Actuarial Research Centre
Heriot Watt University
15 January 2015

What is Liquidity Risk?

Fund Transfer Pricing

Bank's Balance Sheet

 Either be deposit rich or poor as shown in the graphs.

Want to Maximise Profit from the following equation:

$$P = Li_L + M_L W_O + Bi_B - Di_D - M_B W_B$$

Assets multiplied by asset return

Liabilities multiplied by rate of return

$$B = \alpha D + \beta M_B$$

Comments

Comments on Profit Maximisation Formula

Bank sets i_L , i_D :

$$L \equiv L(i_L)$$
$$D \equiv D(i_D)$$

Wholesale market: Borrowing or Lending

Normally
$$M_B > 0$$
, $M_L = 0$
or $M_B = 0$, $M_L > 0$

Want to Maximise Profit from the following equation:

$$P = \underline{Li_L} + M_L W_O + Bi_B - Di_D - M_B W_B$$

Assets multiplied by asset return

Liabilities multiplied by rate of return

$$B = \alpha D + \beta M_B$$

Want to Maximise Profit from the following equation:

$$P = Li_L + M_L W_O + Bi_B - Di_D - M_B W_B$$

Assets multiplied by asset return

Liabilities multiplied by rate of return

$$B = \alpha D + \beta M_B$$

Want to Maximise Profit from the following equation:

$$P = Li_L + M_L W_O + Bi_B - Di_D - M_B W_B$$

Assets multiplied by asset return

Liabilities multiplied by rate of return

$$B = \alpha D + \beta M_B$$

Want to Maximise Profit from the following equation:

$$P = Li_L + M_L W_O + Bi_B - Di_D - M_B W_B$$

Assets multiplied by asset return

Liabilities multiplied by rate of return

$$B = \alpha D + \beta M_B$$

Want to Maximise Profit from the following equation:

$$P = Li_L + M_L W_O + Bi_B - Di_D - M_B W_B$$

Assets multiplied by asset return

Liabilities multiplied by rate of return

$$B = \alpha D + \beta M_B$$

Want to Maximise Profit from the following equation:

$$P = Li_L + M_L W_O + Bi_B - Di_D - M_B W_B$$

Assets multiplied by asset return

Liabilities multiplied by rate of return

$$B = \alpha D + \beta M_B$$

Want to Maximise Profit from the following equation:

$$P = Li_L + M_L W_O + Bi_B - Di_D - M_B W_B$$

Assets multiplied by asset return

Liabilities multiplied by rate of return

$$B = \alpha D + \beta M_B$$

FTP Results

Deposit Rich (M_B =0):

$$P = L(i_L)(i_L - W_O) + D(i_D)((1 - \alpha)W_O + \alpha i_B - i_D)$$

FTP Rate when bank is Deposit Rich:

For Loan Unit, FTP Rate is W_0 For Deposit Unit, FTP Rate is $(1 - \alpha)W_0 + \alpha i_R$

FTP Results

Similarly:

FTP Rate when bank is Deposit Poor (M_L =0):

For Loan Unit, FTP Rate is
$$\frac{W_B}{1-\beta} + \frac{\beta i_B}{1-\beta}$$

For Deposit Unit, FTP Rate is

$$(1-\alpha)\left(\frac{W_B}{1-\beta}+\frac{\beta i_B}{1-\beta}\right)+\alpha i_B$$

$P = L(i_L)i_L + M_LW_O + Bi_B$ $-D(i_D)i_D - M_BW_B$

Profits

Maximum Profit is £3.33m when $i_L=12.61\%$ and $i_D=2.44\%$

Deposit Poor

Conclusion

- FTP can be separated independently between business units
- FTP rates are independent of demand and supply functions
- Can be used to maximise overall profits of the bank
- It incorporates liquidity constraints within the FTP system
- More work needs to be done to estimate the appropriate α and β