Modelling cancer risk: regional and socioeconomic disparities

George Streftaris and Ayşe Arık

Heriot-Watt University, Edinburgh

ARC Webinar Series - 30 September 2021

Modelling, Measurement and Management of Longevity and Morbidity Risk

- Major research programme funded by the Actuarial Research Centre running from 2016 to 2021
- Significant supporting funding from the Society of Actuaries and the Canadian Institute of Actuaries
- Themes
 - Development of new single and multi-population models for mortality and new sub-population mortality datasets
 - Drivers of mortality and cause of death analysis
 - Longevity risk management
 - Stochastic models for critical illness insurance Joint work with:
 Dr E Dodd (Southampton U), Prof A Cairns (HWU)

Actuarial Research Centre Institute and Faculty of Actuaries

Research objectives

- Focus on all-cancer, lung, bowel, prostate, and breast cancer rates
- Analyse and model incidence/mortality rates to identify

 temporal trends
 - variation by region and deprivation
- Quantify the impact of diagnosis delays on mortality
 also linked to delays relating to Covid-19
- Project cancer rates in future years

Cancer data

Cancer registration and deaths data England: Office for National Statistics (ONS)

• Age groups: 0, 1-4, 5-9, ..., 95+

Age-standardised results, based on the European Standard Population (ESP) 2013

- Gender
- Years: 2001 2017 (also some data since 1981)
- Income Deprivation (ID) decile
 - 1: most deprived; 10: least deprived
- Regions of England: North East, North West, Yorkshire and the Humber, East Midlands, West Midlands, East, London, South East and South West

Trend over time

All-cancer incidence, mortality Age standardised rates (no modelling)

- Based on European Standard Population (ESP) 2013
- Increasing trends for morbidity incidence
- Decreasing trends for mortality

Notable exception in trend:

Lung cancer Age standardised rates (no modelling)

- Decreasing trend for males incidence
- Increasing for females
- Mortality rates only slightly lower

Regional and/or socioeconomic differences in cancer rates?

- How big is the gap?
- Is it getting better? Worse?

We need modelling - to account for uncertainty and noise.

Stochastic modelling

• How do rates depend on risk factors?

- Transition characterised by underlying rate $\theta_{g,r,a,d,t}$
- $\theta_{g,r,a,d,t}$ depending on gender, region, age, deprivation, time
- Quantify uncertainty (probability intervals)

Bayesian models for incidence and mortality rates

$$\begin{split} & C_{a,t,d,g,r} \sim \mathsf{Poisson}(\theta_{a,t,d,g,r} \; E_{a,t,d,g,r}) \\ & \theta_{a,t,d,g,r} \sim \mathsf{Lognormal}(\mu_{a,t,d,g,r}, \sigma^2) \\ & \mu_{a,t,d,g,r} = \beta' \mathbf{X} \\ & \beta' s \sim \mathsf{Normal}(0, 10^4) \quad [\texttt{vague priors for risk factor effects}] \\ & \sigma^2 \sim \mathsf{Inv.Gamma}(1, 0.001) \end{split}$$

- C_{a,t,d,g,r}: number of cancer registrations/deaths of a given malignant neoplasm at age a in year t for gender g in deprivation level d and region r
- $E_{a,t,d,g,r}$: mid-year population estimates
- $\theta_{a,t,d,g,r}$: incidence/mortality rates of a given malignant neoplasm
- X : vector of covariates: age, year, deprivation, gender, region, average age-at-diagnosis + appropriate interaction(s)
- $\boldsymbol{\beta}$: vector of coefficients

Model selection

- Bayesian variable selection methodology used
- Chooses the **best** model for

$$\mu_{\mathsf{a},t,d,g,r} = \boldsymbol{\beta}' \boldsymbol{X}$$

according to model fitting criteria

(here marginal likelihood & deviance information criterion)

- Results suggest that all main variables (age, time, deprivation, gender, region) are important for all-cancer and life-style cancers, i.e. lung and bowel cancer
 - · deprivation is not important for breast and prostate cancer mortality

Change points

- Allow change point(s) in time trends (and age)
 - E.g. different trend after new health/screening policy introduced
 - or after a certain age
- Changepoint analysis, based on BIC, is considered for detection of changes

$$\mu_{a,t,d,g,r} = \beta_0 + \beta_1$$
 year $+ \dots$

may become

$$\mu_{a,t,d,g,r} = \beta_0 + \beta_{1,1} \text{ year}_{\leq 2006} + \beta_{1,2} \text{ year}_{\geq 2007} + \dots$$

Which factors (significantly) affect rates?

- Age: higher rates at older ages
- Time:
 - higher incidence in more recent years (for most types)
 - lower mortality
- Gender: higher rates for men
- Region?

Deprivation?

Impact of income deprivation on lung cancer incidence (women)

Poll:

- Q: The difference between rates for most and least deprived is
 - (a) **negligible**: mostly noise;
 - (b) significant: higher rates for **most** deprived and **getting wider** over time;
 - (c) significant: higher rates for **most** deprived, but **getting narrower** over time.

Regional variation in lung cancer incidence - Females, 2017

Regional variation in breast cancer incidence - 2017

Deprivation inequality in cancer rates Lung cancer incidence - Females, 2001-2017

• Inequalities more evident in northern regions

Most v. least deprived by region Lung cancer incidence - Females, 2017

- Rates for most deprived much higher
- Regional variation

Most v. least deprived by region Breast cancer incidence - 2017

- Rates for least deprived higher
- No regional variation

Modelling mostly the same as for incidence

Focus on:

- deprivation and regional differences
- impact of diagnosis delays on mortality
- projection

Deprivation inequality in cancer rates Lung cancer mortality - Females, 2017

• Higher rates for most deprived (1)

• Inequalities more evident in more deprived groups

Regional variation in breast cancer mortality - 2017

• Deprivation is not-significant

Impact of diagnosis on mortality

Early cancer diagnoses plummeted in England during Covid pandemic

Official figures spark fears that patients may miss out on treatment until it is too late

▲ The number of people in England diagnosed with stage one cancer was down 33% in March-June 2020 compared with a year earlier. Photograph: Alamy Stock Photo

The number of people being diagnosed with cancer early in **England** has plummeted during the Covid pandemic, sparking fears that many will only be treated when it is too late to save them. \checkmark Estimate average age-at-diagnosis, AAD, with incidence data

 \checkmark Include AAD as a factor in mortality model

$$\mathsf{AAD}_{t,d,g,r} = \frac{\sum_{a} \hat{\theta}_{a,t,d,g,r} E_{a}^{\mathsf{std}} a}{\sum_{a} \hat{\theta}_{a,t,d,g,r} E_{a}^{\mathsf{std}}}$$

 $E_{\rm a}^{\rm std}$: exposures at age a in the ESP 2013

$$\mathsf{AAD}_{d,g,r} = \frac{\sum_{t} E_{t,d,g,r} \mathsf{AAD}_{t,d,g,r}}{\sum_{t} E_{t,d,g,r}}$$

 $E_{t,d,g,r}$: original exposure aggregated over age

Impact of diagnosis on mortality by region All cancers - Males

- Impact of age-at-diagnosis compared to the mean level across regions (set to 1)
- N.West: significantly lower effect
- East: significantly higher effect
- London: not significantly different from the average

Change in mortality

Impact of diagnosis delay on mortality Lung cancer - Females

- 6-month delay:
 - 3.5% increase in mortality
- 1-year delay:
 - 7% increase in mortality
- Highest impact in London

Increase in mortality (%)

A Markov model for diagnosis delay - Breast cancer

Breast cancer Markov model -A cohort of 100,000 women aged 47 at time zero

Data used:

- Breast cancer registrations and deaths (ONS data)
- Weekly excess deaths in women between 1 April 2020 1 July 2021 (PHE data)

Assumptions:

- states 2-4: Early-stage \approx 70% All-stage (ONS data, 2012 2016)
- state 4: Advanced-stage \approx 30% Early-stage (O'Shaughnessy, 2005)

Breast cancer Markov model - COVID-scenarios

No change in state 1

A reduction in cancer registrations (state 3) by

- Scenario 1: 75% for 3 months between April 2020 June 2020
- Scenario 2: Scenario 1 + 50% between July September, and 25% for the following 6 months
- Series Breast cancer deaths $\approx 3.7\%$ All-deaths (PHE, 2017)
 - state 6: excess breast cancer deaths $\approx 3.7\%$ excess deaths

An illustration for breast cancer Markov model

A cohort of 100,000 people aged 47 at time zero, aged 67 at time 20

	Transition numbers		
state	Base Scenario	Scenario 1	Scenario 2
Healthy	94279	93545	93523
Death (other)	3813	4545	4545
Death (breast cancer)	645	652	670

In Scenario 2:

- excess number of deaths
 - 25 (BC, state 6) 4%
 - 732 (Other, state 5) 19%
- 10-year net survival rate
 - 91.52% for a woman in (early) state 3 (v. 92.10% in Base Scenario)
 - 15.70% for a woman in (advanced) state 4 (v. 19.08%)

A projection model Lung cancer mortality

$$\begin{split} & \mathsf{C}_{\mathsf{a},t,d,r} \sim \mathsf{Poisson}(\theta_{\mathsf{a},t,d,r} \; \mathsf{E}_{\mathsf{a},t,d,r}) \\ & \theta_{\mathsf{a},t,d,r} \sim \mathsf{Lognormal}(\mu_{\mathsf{a},t,d,r},\sigma^2) \\ & \mu_{\mathsf{a},t,d,r} = \beta_0 + \beta_{1,\mathsf{a}} + \beta_{2,t} + \beta_{3,r} + \beta_{4,d} + \beta_5 \mathsf{AAD}_{r,d} \\ & \sigma^2 \sim \mathsf{Inv.Gamma}(1,0.1) \\ & \beta_0, \; \beta_1, \; \beta_3, \; \beta_4 \; \mathsf{and} \; \beta_5 \sim \mathsf{Normal}(0,10^4), \end{split}$$

$$\begin{split} \beta_{2,t} &= \mathsf{drift} + \beta_{2,t-1} + \epsilon_t \\ \mathsf{drift} \sim \mathsf{Normal}(0, \sigma^2_{\mathsf{drift}}) \\ \epsilon_t \sim \mathsf{Normal}(0, \sigma^2_{\beta_2}) \\ \sigma^2_{\beta_2} \sim \mathsf{Inv}.\mathsf{Gamma}(1, 0.001), \end{split}$$

where
$$\hat{\sigma}^2_{\mathsf{drift}} = rac{\hat{\sigma}^2_{eta_2}}{2018-2001}$$
 for $t = 2001, 2002, \dots, 2018.$

Projected cancer rates (1): men Lung cancer mortality - age 72, 2001-2035

- Decreasing trend over time
- Projected rates for most & least deprived NOT overlapping

Projected cancer rates (2): women Lung cancer mortality - age 72, 2001-2035

- Mortality for women NOT decreasing
- More uncertainty (compared to men)
 - still rates for most deprived not catching up

Summary and future directions

- Regional and socioeconomic gap for cancer rates is widening
 - but not for all cancer types
- Delay in diagnosis can lead to significant increase in type-specific cancer deaths
- Projection for lung cancer mortality shows persistent deprivation gap
- Can public health interventions at regional and deprivation level contribute to lower cancer incidence and deaths?
- What are the implications for related insurance products?

- Arık, A., Dodd, E., Cairns, A., Streftaris, G.. Socioeconomic disparities in cancer incidence and mortality in England and the impact of age-at-diagnosis on cancer mortality, PLOS ONE, 2021.
- Arık, A., Dodd, E., Streftaris, G.. Cancer morbidity trends and regional differences in England - a Bayesian Analysis, PLOS ONE, 2020.

The views expressed in this presentation are those of the presenters.

George Streftaris and Ayşe Arık

34 / 3