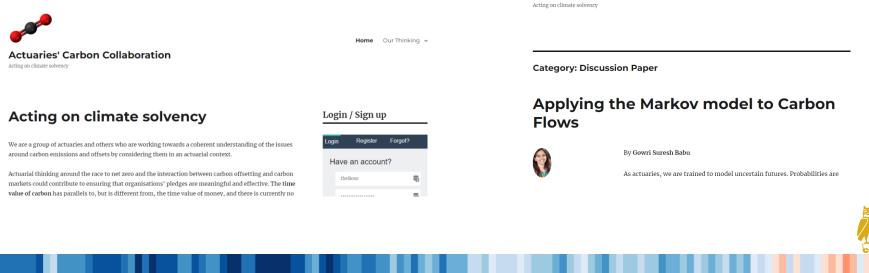
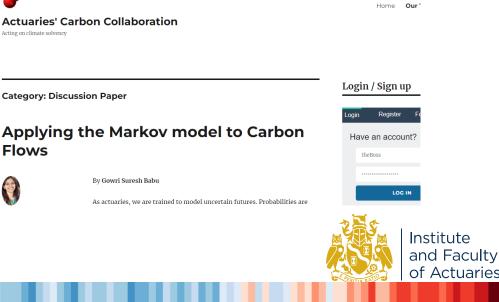


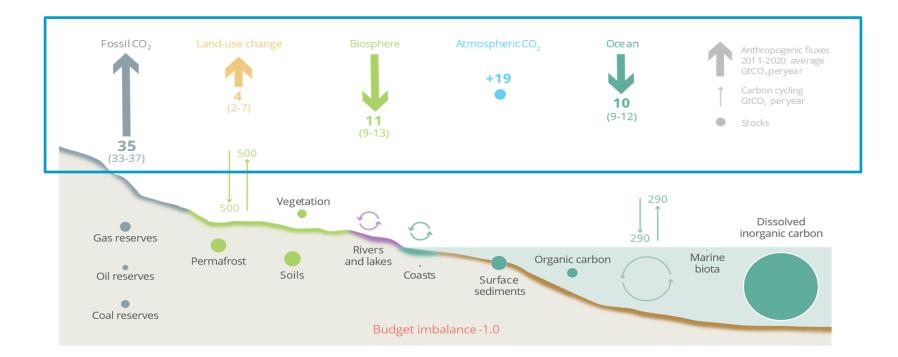
Institute and Faculty of Actuaries

Carbon Solvency

Louise Pryor and Roelof Coertze


Content

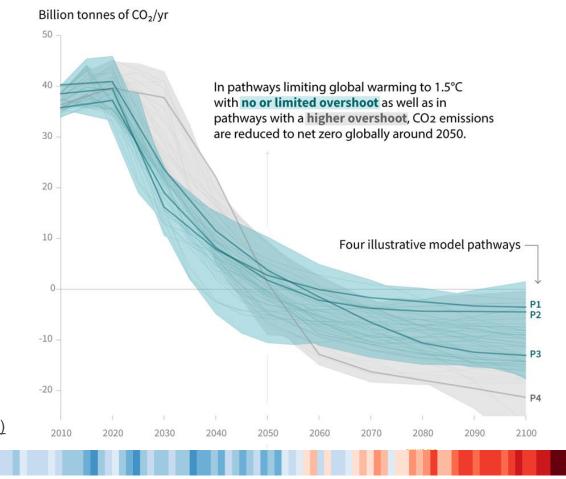

- What is the ACC?
- Why are GHG emissions like cashflows?
- What insights have we gained?
- What do we want to achieve?


What is the Actuaries' Carbon Collaboration (ACC)?

- Working towards a coherent understanding of the issues around carbon emissions and offsets by considering them in an actuarial context
- Has around 15 members
- Experienced actuaries and young students, architects, environmental specialist...
- https://carbon.ifoagroups.org.uk/

GHG emissions vs. cashflows

Perturbation of the global carbon cycle caused by anthropogenic activities, global annual average for the decade 2011–2020 (GtCO₂/yr)

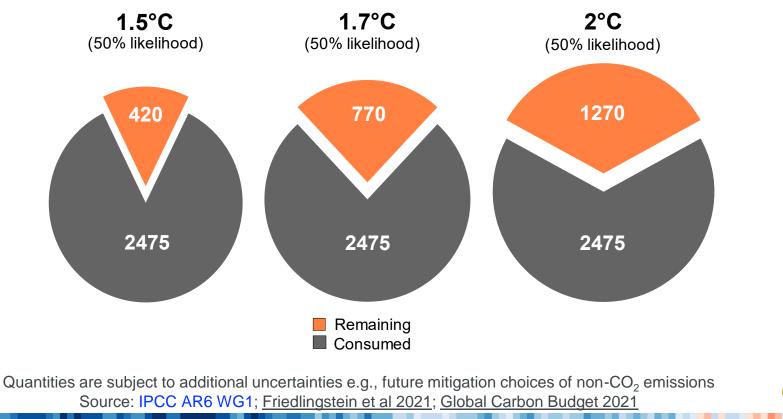

The budget imbalance is the difference between the estimated emissions and sinks. Source: NOAA-ESRL; Friedlingstein et al 2021; Canadell et al 2021 (IPCC AR6 WG1 Chapter 5); Global Carbon Project

Institute and Faculty of Actuaries

Global net zero

- Global net zero by 2050 is necessary but not sufficient on its own
- Essentially a flow-based milestone for a stock-based goal

Global total net CO₂ emissions



Source: IPCC Special report: Global Warming of 1.5C (SR15 SPM)

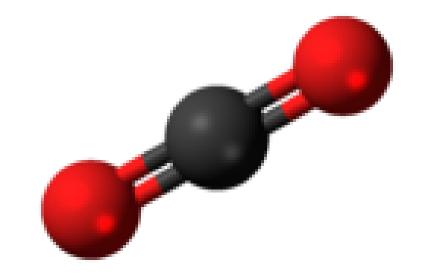
Carbon budget

The remaining carbon budget to limit global warming to 1.5°C, 1.7°C and 2°C is shown below.

This is equivalent to 11, 20 and 32 years at the current rate.

https://carbon.ifoagroups.org.uk

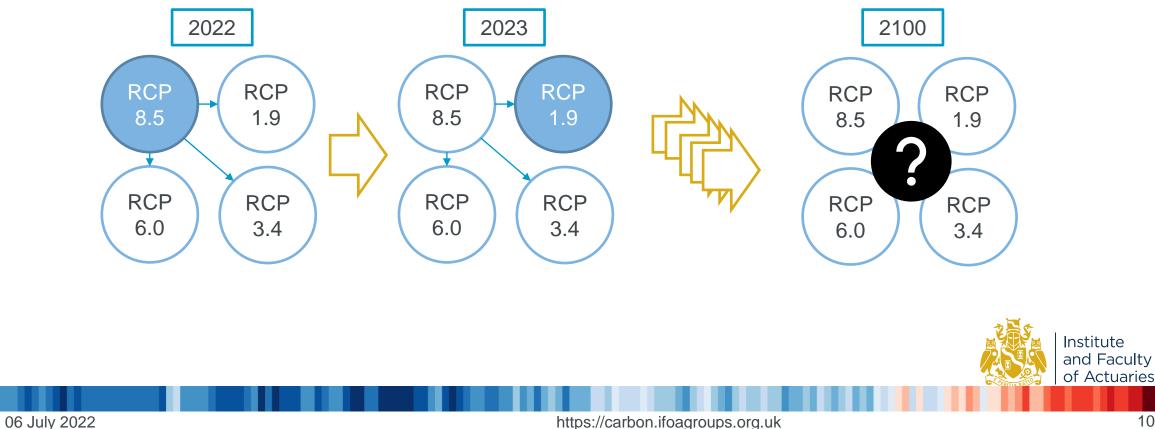
06 July 2022


Carbon solvency

- Carbon (and other GHG) emissions and absorptions mirror asset and liability cashflows
- What kind of buffer? 0.5% probability over 1 year = 14% over 30 years?? Versus 50% over 30 years??
- Valuing and accounting for carbon revenue account and balance sheet
- Stochastic modelling, risk capital, planning and risk management

Insights from the ACC

- Call to arms
- Applying actuarial skills
- Collaborations
- Educational pieces
- Prototypes

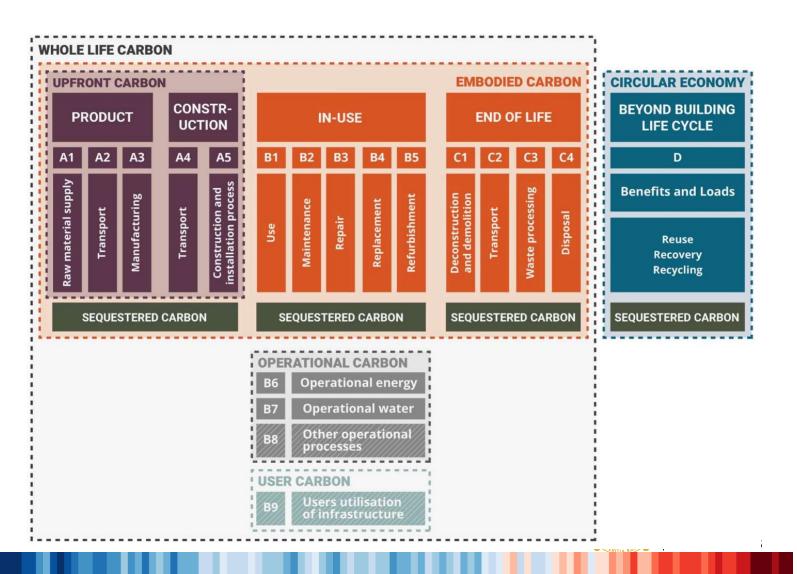

Call to arms

- Actuaries can and need to step up to the climate emergency
- Our insurance skills are applicable to climate solvency
- Actuaries have strong influence in insurance companies

"[It] is time to use our deep and wide insurance expertise as a springboard to the field of GHG accounting and climate solvency. Actuaries could and should play a key role with other professionals including climatologists, economists, engineers and scientists."

Applying actuarial skills: Markov model

By applying a Markov model, we can assess the impacts on where we may end up by 2100


Applying actuarial skills: Time value of carbon

- Discounting calculations assume ergodicity i.e., no irreversible changes occur
 - Most financial processes are non-ergodic
 - Social changes are non-ergodic (social time preference rate)
- Discounting calculations are functions of time
 - Value of carbon depends on the state of the carbon budget

Collaboration

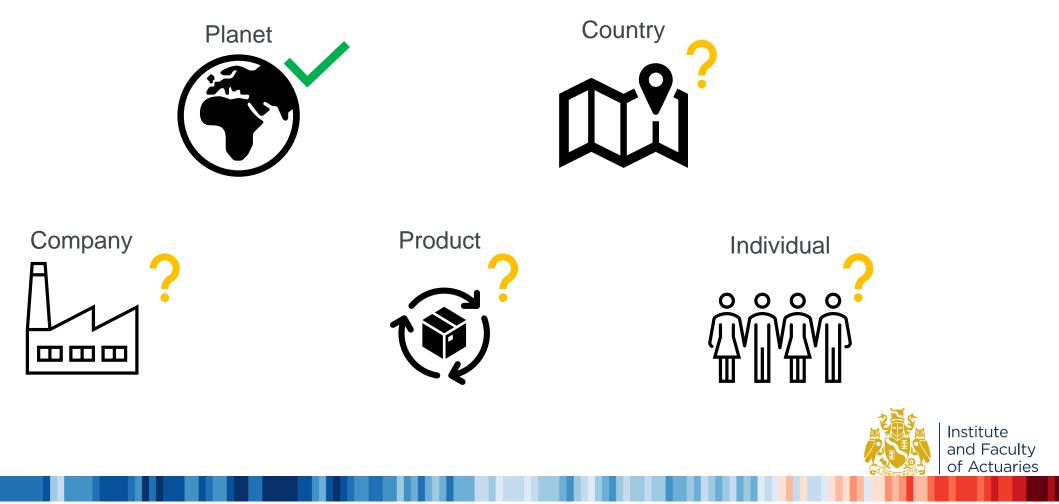
- Building industry's framework for 'whole of life carbon'
- Familiar challenges regarding data, models

Education

Introduction to carbon credits

- Carbon markets are expected to grow rapidly
- Carbon offset vs carbon credit
- Concerns around the use of credits
- Standards developed to address concerns

Trees' role in carbon capturing


- Significant factor in achievement of global net zero
- Uncertainty about the longevity of carbon offsets associated with trees
- Net zero pledges of four oil and gas producers means "their plans alone could require an area of land twice the size of the U.K."

06 July 2022

Institute and Faculty of Actuaries

Education

What does "net zero" mean?

Prototype: stochastic carbon emissions

 Gap identified for need to assess impact of decisions on achieving emissions targets • Visualisation tool can be applied to planet, country, organisation, product,

emissior	is targ	ets			Emissions by year		\checkmark
		ACC Carbon Tool		About Analysis - Help - ACC	Emissions in selecte	ed year	^
					Distribution of a	annual emissions in 2050 for all sources	
Scenario specifications					0.0009		
Start year 2022	Years 50	Simulations 100	0	ame of the uncertainties in carbon emissions. It can be used to model the is, or the whole world. You can use it to see how likely you are to meet your	0.0008	25% 75% 25 29,018 30,193 37,4	% 818 38,449
Scenario 1 Scen Description Description		cenario 2		Scenario 1 – NDCS only (based on countries NDCs) Scenario 2 – NDCS then decrease (based)	on countries NDCs)		
NDCS only		NDCS then decrease		Summary	\sim		
Base scenario countries NDCs	~ 8	Base scenario countries NDCs	Ý	Emissions by year	^		
Distribution trend		Distribution trend		annual emissions by year for all sources			
Start 2022 Stop	2050 S	Start 2030 Stop	2070	40.000 Scenario 1 Scenario 2			
Level Method none Y Rate		Level Method compound Y Rate	-0.01	2050			
Spread		Spread	-0.01	35,000			
Method none Y Rate		Method compound V Rate	0.03	30,000		28,000 30,000 32,000 34,000 36,000	38,000 40,000
Distribution shock		Distribution shock					\checkmark
Year 2027 Durat	ion 0 Y	Year 2027 Duration	0	25,000			
Change		Change		20,000			
	d 0.1 L	Level -0.5 Spread	0.1				
RUN				15,000	and the set of the set		Institute
://carbontool.ifoagroups.org.uk/			Emissions in selected vear	~		and Faculty of Actuaries	
July 2022 <u>https://carbon.ifoagroups.org.uk</u>							15

What do we want to achieve?

- Aims:
 - Help people understand the consequences
 - Credibility
 - Building towards thought leadership
- Key spheres of influence

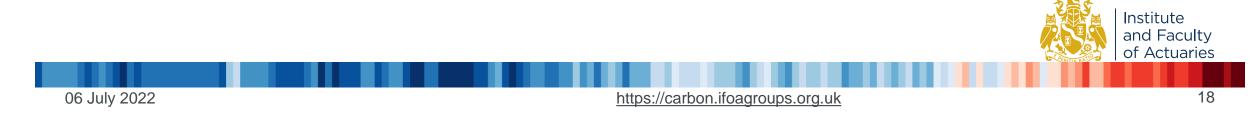
- Key strengths:
 - Dealing with uncertainty
 - Modelling
 - Data
 - Collaboration
 - Identifying inconsistency

Web: carbon.ifoagroups.org.uk

Linkedin: @actuariescarboncollaboration

Twitter: @actuariescarbon

Email: acc@carbon.ifoagroups.org.uk



06 July 2022

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

