

GIRO50 Conference 2023

1-3 November, EICC Edinburgh

Why isn't machine learning more transparent in personal lines pricing?

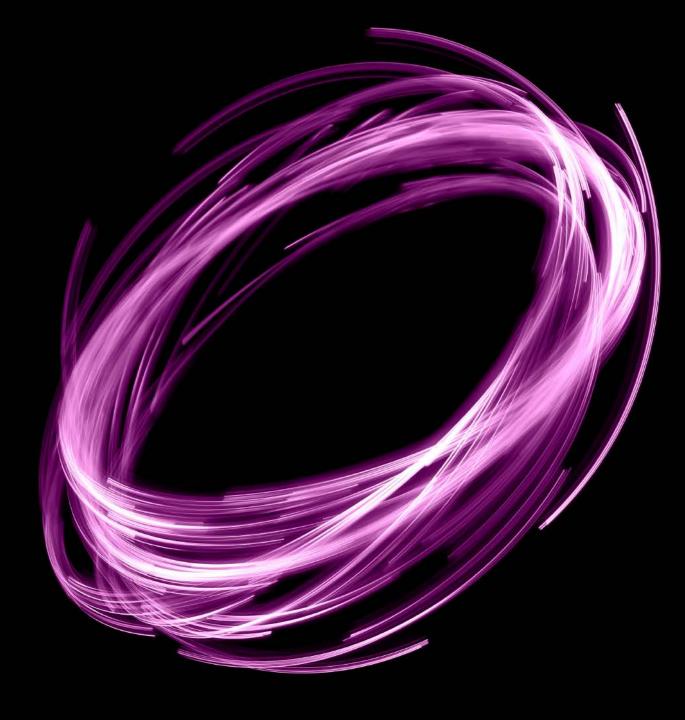
Neil Chapman, Senior Director, WTW Rachael McNaughton, Director, WTW



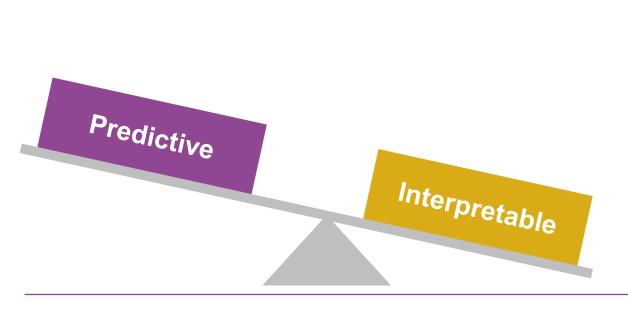
Agenda

- Introduction to transparent machine learning
- Challenges & opportunities
- What does the solution look like?
- Q&A

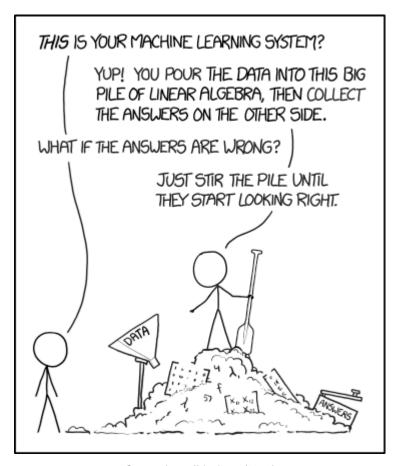
What is transparent machine learning?



What are we trying to achieve?



Why should we care about interpretability?



Source: https://xkcd.com/1838/

External

Regulatory compliance

Ethical standards

Policyholder retention

Internal

Domain knowledge

Robust models

Management approval

Informed decisions

Debugging

01 November 2023

Qualities of Interpretations

Comprehensibility: How well do humans understand the explanations?

Fidelity: How well does the explanation approximate the prediction of the black box model?

Stability: How similar are the explanations for similar instances?

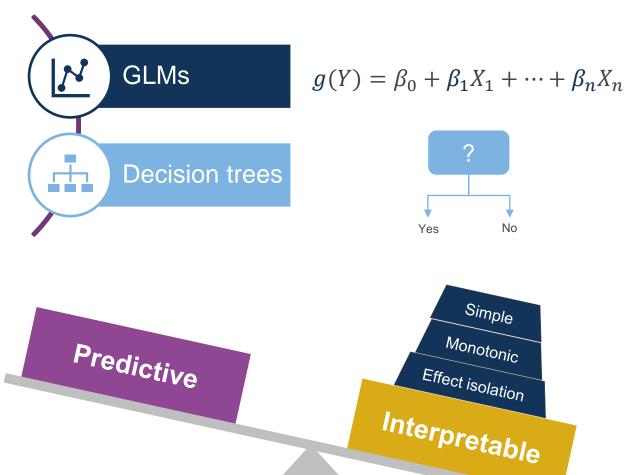
Selective: Focus on the most important few features

Constrastive: Why was this prediction made *instead of* another prediction?

Institute and Faculty of Actuaries

Challenges and opportunities

Why are the more predictive models not interpretable?



What does it mean to interpret a model?

Inherently interpretable model

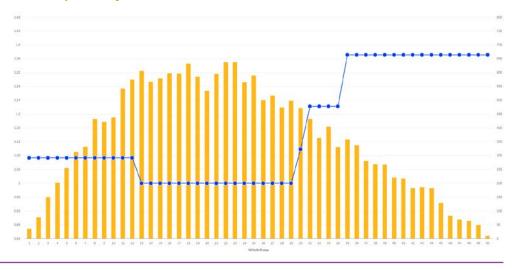
Price = 50 + Age * 0.1 + License Length * 0.5

"extraction of relevant knowledge from a machine-learning model concerning relationships either contained in data or learned by the model"

Source: Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. "Definitions, methods, and applications in interpretable machine learning." Proceedings of the National Academy of Sciences, 116(44), 22071-22080. (2019)

Approximate explanation for complex models

On average the model has learned the following relationship between vehicle age and claims Frequency:



Types of Interpretations - global and local approximations

"How does the trained model make predictions?"

- Which features are generally important?
- What relationship does each feature have with the target?
- What interactions exist?

"Why did the model make a certain prediction for an observation?"

- How does this observation compare to a typical observation?
- Which features set this observation apart?
- What contribution did each feature have in determining the prediction for this observation?
- Locally, an otherwise complex model may behave more agreeably (i.e., linearly)

Local

Example: Feature Importance

Feature Importance

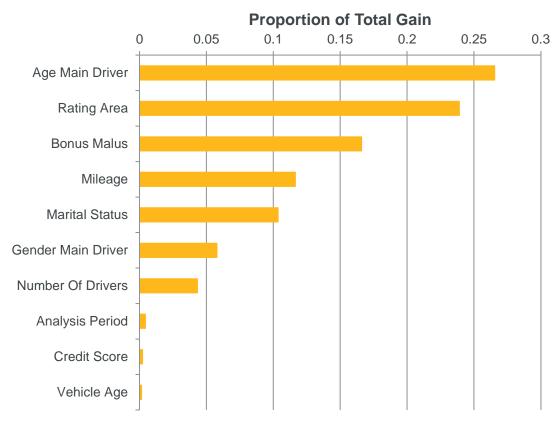
Answers global questions:

"which features are generally important"

But...

Doesn't tell us about the relationship between features and the target

Doesn't distinguish interaction and main effects



Example: Shapley Values

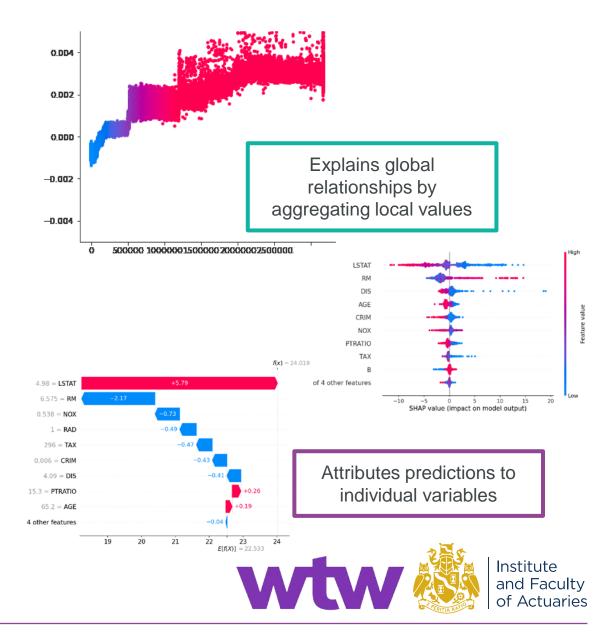
Answers local and global questions:

"How did each variable contribute to this prediction?"

"What relationship does each feature have with the target?"

But...

Computationally intensive

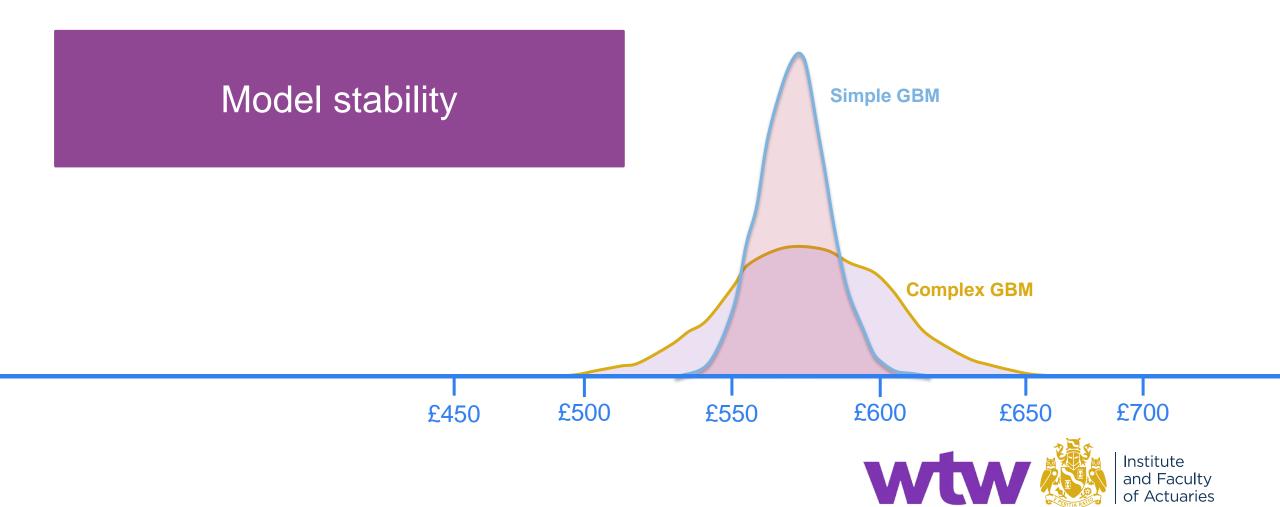


Model stability

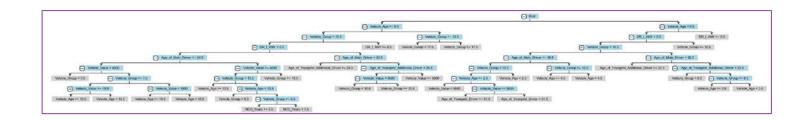
Deployment

Potential knowledge gap owing to legislation

Return on Data Science investments

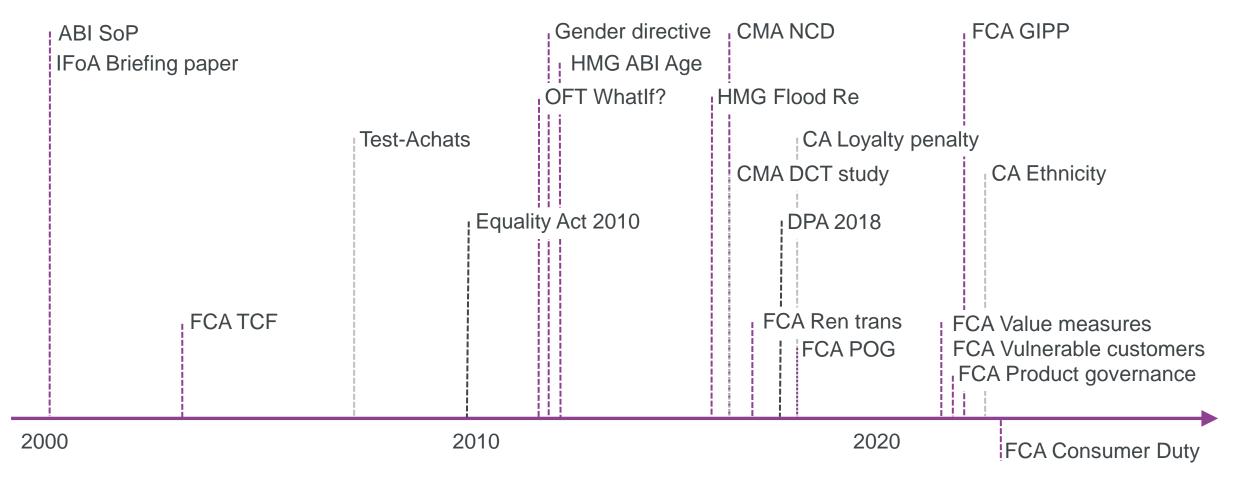


Deployment



Potential knowledge gap owing to legislation

Timeline of increasing regulatory demands leading up to the FCA's new Consumer Duty rules



Return on Data Science investments

This Photo by Unknown Author is licensed under CC BY-SA

What are the opportunities?

What does a solution look like?

So how do we achieve model transparency?

Use an inherently interpretable model

 Use approximations to provide explanations for a complex model

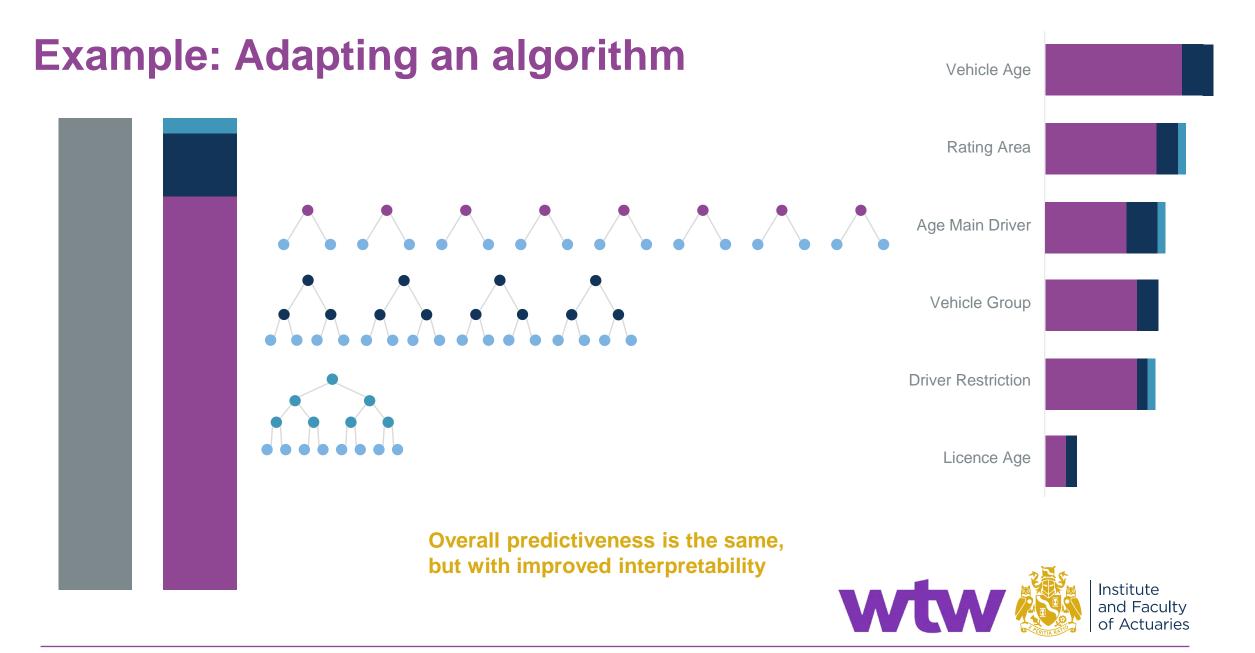
 Constrain or adapt an algorithm for a complex model to incorporate built-in interpretability, or enhance its other qualities

So how do we achieve model transparency?

Interpretability techniques vs. Interpretable models

- Interpretability techniques have a variety of weaknesses
 - Inability to distinguish main effects and interaction effects
 - Unrealistic assumptions
 - Approximations of the true effects
 - Computation time/resource
- Two potential alternatives:
 - Try to improve existing interpretable models (GLMs, ENs)
 - Adapt complex models to incorporate built-in interpretability

Example: Adapting an algorithm Vehicle Age **Rating Area Age Main Driver** Vehicle Group **Driver Restriction** Licence Age ■ Single factor effects ■ 2-way interaction terms ■ 3-way interaction terms



Assessment of methods for insurance pricing

Method

Considerations:	GLM	Penalized Reg ression	Trees	Random Forests	GBMs	Layered GBMs	Neural Networks
Predictive power							
Interpretation							
Implementation							
Stability							
Execution speed							
Analytical time/effort							

Beyond a better predictive model

Skills, Processes & Culture

 Understanding business context is key

Ensure there is a "human in the loop"

Consider what is being incentivised

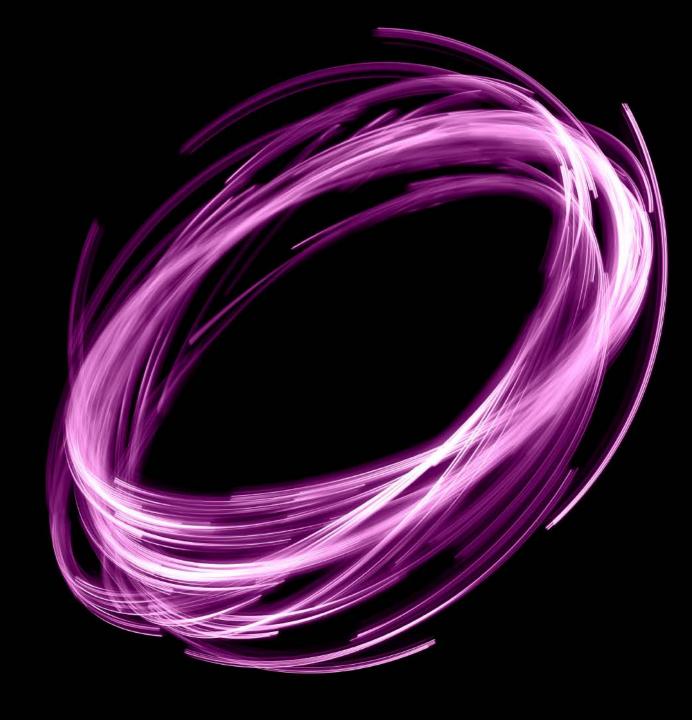
Build vs Buy

- ✓ Tailored to your particular needs
- Don't pay for any features you don't need
- You can adapt and enhance as you see fit
- ✓ Short term cost may be attractive.

- Risk in delivery and implementation
- Commonly underestimate the costs
- Not a core strategic area
- Key-person risk
- Long-term development and support often underfunded

- ✓ Often a proven solution
- Solution will be developed and maintained over time
- ✓ Commercial support available
- ✓ This is a core strategic area for the provider
- The solution, whilst often customisable is not being built for your specific needs
- ➤ The solution may appear expensive on a shortterm basis
- Less control on future development.
- Risk the supplier could move away from this area or go out of business

Conclusions



$N \rightarrow R$ $N \ge n_0 : (x_n - g) < \varepsilon$ 9€[0,1): \x,x'EX $x_n \leq y_n \leq z_n$

Conclusions

Transparency is important

There are challenges in achieving transparency

 Implementation is dependent on model specifics but also wider considerations

Questions

Comments

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

Thank you

