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Abstract 

The popularity of green, social and sustainability-linked bonds (GSS bonds) continues to rise, with 
c.USD 939 billion of such bonds issued globally in 2023.  Given the rising popularity of ESG-related 
investment solutions, their relative recent emergence and limited research in this field, continued 
investigation is essential.  Extending non-traditional techniques i.e. neural networks to such fields 
creates a good blend of innovation and potential. 

This paper follows on from our initial publication, where we aim to replicate the S&P Green Bond Index 
(i.e. this is a time series problem) over a period using non-traditional techniques (i.e. with neural 
networks) predicting 1 day ahead.   

In this paper, we retain a univariate analysis and focus on a more complex neural network architecture 
design, specifically N-BEATS, with the aim of at least producing similar performance results as per the 
Baseline model.  The N-BEATS architecture is a complex feedforward neural network architecture, 
consisting of basic building blocks and stacks, introducing the novel doubly residual stacking of 
backcasts and forecasts.  The original authors of the model architecture noted in 2020 that this 
cutting-edge approach outperformed the Makridakis time series M4 competition model winner by 3% 
within their tests.   

In this paper, we also revisit the neural network architectures from our initial publication, which include 
DNNs, CNNs, GRUs and LSTMs.  We continue the univariate time series problem, increasing the data 
input window from 1 day to 2 and 5 days respectively, whilst still aiming to predict 1 day ahead.  
Increasing the input window should hopefully improve model performance, as we are exposing the 
models to more information. 

The Baseline of setting today’s index value equal to the prior day resulted in model predictions with an 
overall performance of c.0.5% (based on a MAPE measure) - though simple in design - is surprisingly 
accurate and difficult to materially outperform.  We trained an N-BEATS model but varied the input 
window between 1, 2 and 5 days whilst retaining a prediction horizon of 1 day.  The results of our 
analyses for N-BEATS were inconclusive with the trained models producing comparable results to the 
Baseline model with differences in performance of up to c.+0.04% (based on a MAPE measure) and 
hence no material outperformance.  

Extending the input window to 2 and 5 days respectively across DNN, CNN, GRU and LSTM models, 
whilst retaining a prediction horizon of 1 day, produced comparable results but no improvement in 
model performance when compared with the Baseline, with differences in performance of up to 
c.+0.3% (based on a MAPE measure).  Hence, the overall results were inconclusive.  
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Disclaimer 

The views expressed in this publication are those of invited contributors and not necessarily those of 

the Institute and Faculty of Actuaries (IFoA).   

 

The Institute and Faculty of Actuaries does not endorse any of the views stated, nor any claims or 

representations made in this publication and accept no responsibility or liability to any person for loss 

or damage suffered as a consequence of their placing reliance upon any view, claim or representation 

made in this publication.  The information and expressions of opinion contained in this publication are 

not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and 

should not be treated as a substitute for specific advice concerning individual situations.  On no 

account may any part of this publication be reproduced without the written permission of the Institute 

and Faculty of Actuaries.  

  

This paper expresses the views of the individual authors and not necessarily those of their employers.  
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Section 1: Executive summary 
We are pleased to publish our second paper as a Working Party using data science techniques to look 
at sustainability and climate change-related issues.  In this paper, we summarise the second stage of 
our analysis, where we explore more complex data science techniques and architectures to continue 
our time series analysis of the Standard & Poor’s (S&P) Green Bond Index. 

Scope of this paper 

This paper builds on the initial paper published on 1 November 2023 via the IFoA blog site (Dey, 
2023) and published on 11 March 2024 via the British Actuarial Journal (Dey, 2024), where we extend 
the time series univariate analysis to a more complex neural network architecture (please see below).  
We have deliberately excluded traditional stationarity techniques such as ARIMA as well as 
restricted this paper to a univariate analysis, to help focus on the impact of using a pure neural 
network design and help with interpretability of the results.  We may consider traditional stationarity 
techniques and expanding our analysis to multivariate in subsequent papers. 

For the purposes of this paper, we have focussed the S&P Green Bond Index and performed various 
univariate time series analyses using a range of neural network architectures only.  The first part of 
this paper, Section 3, mainly focusses on using a rolling window approach of one prior day’s index 
value to predict today’s index value.  The latter part of this paper, Section 4, extends the input window 
to a longer input period but the output horizon remains as 1 day. 

In particular, this paper discusses (arranged as per the following Sections): 

• Section 2: Introduction 
o Recap on the prior analysis (Dey, 2024), the data used and how we will build on our 

analysis in this paper. 
• Section 3: N-BEATS  

o Introduction to N-BEATS (Neural Basis Expansion Analysis for interpretable Time 
Series forecasting) architecture and extending our time series analysis to incorporate 
N-BEATS. 

• Section 4: Widening the window 
o Extending our analysis to widen the input window into the original architectures from 

the first paper (Dey, 2024). 
• Section 5: Conclusions and next steps 

o Summary of conclusions from our analysis and potential areas of analysis for 
subsequent papers. 

 
Please note that many of the techniques mentioned in this paper build on our initial paper (Dey, 2024) 
and the detail is not duplicated here.  For more underlying information on some of the architecture and 
modelling techniques, please refer to the initial paper (Dey, 2024) – this paper will be referred to “initial 
paper” throughout – and Appendix 3.  
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Summary of analysis in this paper 

Aim of the analysis 

This paper extends on the initial stages of our time series analysis on GSS (Green, Social and 
Sustainability) bonds (Dey, 2024), specifically focussing on the daily values from the Standard and 
Poor’s (S&P) Green Bond Index and whether or not we can create accurate prediction models using 
neural networks.  This paper builds on the initial paper, where we hope to develop a model which can 
assist with GSS bond index prediction, which will have wider applications such as index price 
modelling and investment portfolio analyses for actuaries and non-actuaries alike. 
 
For the purposes of this paper, we continue to look at predicting a rolling 1-day value of the index, 
based on the prior x days index value over the period 2013 to 2023 inclusive.   
 
We retain the same Baseline model i.e. today’s value equals yesterday’s value over the course of the 
full date range of 31 January 2013 to 17 February 2023.  Similar to the initial paper, we aim to see if 
we can accurately create a time series model with non-traditional methods such as neural networks 
and more complex neural network architectures, in particular using N-BEATS.  Please see later for 
further details. 
 
Analyses using traditional stationarity techniques such as ARIMA and multivariate techniques have 
been deferred to later papers, as previously mentioned.   
 
Towards the end of this paper, we extend our analysis by looking at using the prior x index values 
(window) to predict the next y days in the future (horizon), rerunning the initial neural network 
architectures analysed in our initial paper (Dey, 2024).  We restrict the input window to 2 and 5 days, 
whilst retaining a future horizon to 1 day in this paper.  In Section 3, for N-BEATS, we train the model 
with an input window of 1 day in addition. 
 

Data and method 

We have retained the same underlying data as per the first paper (Dey, 2024) - the S&P Green Bond 
Index values between 31 January 2013 to 17 February 2023, splitting the data using 70% / 20% / 10% 
ratios for training / validation / test data sets.   
 
Section 3 of this paper extends our analysis by introducing a more complex model architecture, the N-
BEATS model architecture.   
 
The latter part of this paper, Section 4, revisits the models analysed in our initial paper but extends the 
input window of data to 2 days and 5 days respectively.  These models can be categorised into the 
following model categories: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Long 
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural network architectures.  This will 
be discussed in Section 4 and Appendix 3 in more detail. 
 
The loss function used during training the models was set to Mean Absolute Error (MAE) for all 
models, with an Adam optimiser to update the weights in order to minimise the loss function as part of 
the training process and L2 regularisation to reduce any overfitting during the training process.  
Hyperparameter tuning of all models was completed via the open-source library Optuna, using the 
Bayesian optimisation algorithm Tree-structure Parzen Estimator (TPE).  These techniques are 
discussed in more detail in the initial paper (Dey, 2024). 
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Results and conclusions 

The results of our analysis for N-BEATS (Section 3) were inconclusive: the models from each category 
produced comparable results to the Baseline model with differences in Mean Absolute Percentage 
Error (MAPE) of up to c.+0.04% and hence with no material outperformance.  
 
Using similar neural network architectures as per the initial paper (Section 4), if we extend the input 
window to 2 and 5 days respectively, there was no improvement in model performance when 
compared with the Baseline, with differences in MAPE of up to c.+0.3%.  Widening the window from 2 
days to 5 days did result in an improvement with some models, though again the overall model 
performance was still worse than the Baseline.  Hence, the overall results were inconclusive.  
 
We are potentially not sharing sufficient correlated information e.g. as per a multivariate analysis for 
our models to learn underlying material information and patterns in the data to result in a model which 
materially outperforms the Baseline.  We aim to address this in future papers (please see below and 
Section 5 for more details). 
 

Next steps  

For future papers, we will expand our analysis to include the following: 
 

1. Expanding the analysis to general GSS bonds.  The analysis in this paper is based on a single 
green bond index.  We will look to expand our analysis to the wider GSS bond universe and 
over differing date ranges for the data to see if there are general underlying conclusions 
across different data sets and GSS bond indices. 

2. Expanding the analysis to include any potential relationships with the general market such as 
stock market and oil prices i.e. move to a multivariate analysis in subsequent papers.  This is 
examined e.g. in (Wang, et al., 2021) which, when coupled with the CEEMDAN-LSTM model, 
seems to produce materially improved model predictions based on green bond time series 
data when compared to a baseline model. 

3. Extend our analysis to alternative neural network architecture types, such as Graph Neural 
Networks (GNNs). 
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Additional disclaimers 

Please note the following: 

a. Information within this paper is valid up to 31 May 2024.  Hence, there may be updates 
beyond this date which are not reflected in this paper e.g. changes to any legislation 
mentioned or updates to any open-source libraries used.   

b. This paper is not intended to be a comprehensive audit of models.  Neither is this paper 
recommending or promoting one approach over another, nor promoting any of the sources 
or references stated in this paper.  Any user of this paper should still reference the 
underlying legislation, reference any standard mentioned in this paper, and should there be 
any conflict, the underlying information in the relevant standard, reference or legislation 
supersedes any information presented in this paper. 

c. Though the work in this paper does not fall under the Financial Reporting Council’s 
Technical Actuarial Standards, this paper has been reviewed both within the Working Party 
and by the Institute and Faculty of Actuaries’ Data Science Practice Board.   
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Section 2: Introduction 
2.1 Recap on prior analysis 

In our initial paper (Dey, 2024), we produced a time series analysis of the S&P Green Bond Index and 
aimed to replicate the index using various models over a certain time period.  The data in our analysis 
was from the end of January 2013 to mid-February 2023.   

Our initial stages of our analysis focussed on a univariate time series model, where our model used 
the prior day’s value to predict the index value one day ahead (i.e. today’s value).  The prediction 
models used were predominantly neural network architectures: deep neural networks (DNNs), 
Convolutional Neural Networks (CNNs), Long Short-Term Memory models (LSTMs) and Gated Neural 
Networks (GNNs).  Please note that for the purposes of this and the initial paper (Dey, 2024), DNNs 
included 1 to 3 hidden layers.  Strictly, a DNN has 2 or more hidden layers.  However, for ease of 
categorisation, we have extended this labelling to include 1 hidden layer as well.  In our initial paper, 
we further extended the analysis to include the popular library XGBoost, which is a decision-tree 
model. We have not considered XGBoost further in this paper. 
 
For the purposes of this paper, we will continue with our analysis with an overall aim to produce a 
sufficiently accurate predictive model, where the models will be based on a neural network 
architecture design.  Data from 31 January 2013 to around mid-February 2022 will be used to train 
and validate the models.  These models will then be used to predict daily index values on unseen data 
from mid-February 2022 to mid-February 2023 (i.e. the test data set).  The difference in predicted 
values from our models with actual daily index figures will be used to gauge the accuracy of the 
proposed models.  

2.2 Summary of data used 

We have continued to use the same data set as per our initial paper (Dey, 2024), downloading via a 
free subscription-based account from the main S&P website https://www.spglobal.com/.  For details of 
the data set and underlying testing of this data, please see our initial paper (Dey, 2024). 
 
For the purposes of this paper, we will analyse the S&P Green Bond Index (Total Performance, USD, 
from 31 January 2013 to 17 February 2023 inclusive).  The splits are as per the initial paper and 
further shown in Figure 1 and Table 1.  Given the nature of the analysis, i.e. a time series analysis, we 
have ordered the data and these splits in chronological order, so that we can build models to infer 
some form of prior time-dependency based on the underlying data, and have not randomly allocated 
the data between these splits across the full data range. 
  

https://www.spglobal.com/
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Figure 1: S&P Green Bond Index data with training / validation / test splits highlighted  

(Output from Google Colab). 

 

The splits equate to as follows: to 16 February 2020, to 16 February 2022 and to 17 February 2023 
inclusive.  Table 1 details further each data split. 

Table 1: Summary table of data used, split by training, validation and test data sets. 

 Full data Training data Validation data Test data 
Start date 31 Jan 2013 31 Jan 2013 17 Feb 2020 17 Feb 2022 
End date 17 Feb 2023 16 Feb 2020 16 Feb 2022 17 Feb 2023 

Number of index 
entries 

2,615 1,830 523 262 

Index minimum 109.80 121.78 133.14 109.80 
Index maximum 158.99 143.59 158.99 143.34 
Index average  

(2 d.p.) 
136.00 133.60 150.46 123.96 

Index standard 
deviation  
(2 d.p.) 

9.65 5.32 5.70 8.04 

In summary, there is greater volatility in the test data set range when compared to the training and 
validation data sets.  Hence, it will be interesting to see how our models cope given that they will be 
built on less volatile training and validation data. 

Similar to the initial paper, for the purposes of our analysis, we have not adjusted the data further  
i.e. no normalisation of the index (setting to a scale of 0 to 1, a technique typically used to result in a 
quicker convergence to a solution for a model) and no log transformation (which can be used to 
potentially dampen any impact of seasonality).  Such techniques may be discussed in later papers.  
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Section 3: N-BEATS 
3.1 Introduction 

We start our analysis with the N-BEATS (Neural Basis Expansion Analysis for interpretable Time 
Series forecasting) architecture.  In this Section, we give an overview of the model architecture, before 
explaining in more detail the generalised model architecture.  We then explain how we trained this 
model architecture specifically on our data set and finally present our results from this analysis. 

Originally submitted in 2019, with the publication revised in 2020, the N-BEATS time series model was 
specifically designed to tackle time series problems.  We will refer to this publication (Oreshkin, et al., 
2019) as the “source paper” throughout this Section.  The source paper states that N-BEATS 
demonstrates state-of-the art performance, improving forecast accuracy by 11% over a statistical 
benchmark and by 3% over last year’s winner of the M4 competition (Oreshkin, et al., 2019).  The 
paper considers tackling a univariate discrete time series problem.  Given this, using the model 
architecture for our forecasting problem seems appropriate. 

The source paper discusses how deep learning techniques have struggled to consistently outperform 
more traditional statistical techniques: the rankings of the six “pure” ML methods submitted to M4 
competition were 23, 37, 38, 48, 54, and 57 out of a total of 60 entries (Oreshkin, et al., 2019).  Please 
note though that we do not explore more traditional techniques in our paper and continue to focus on 
non-traditional techniques i.e. neural networks.   
 
The Makridakis Competitions is an open time series competition (Makridakis, et al., 2020).  The fourth 
iteration of the competition, M4 which is mentioned above, was held in 2020. 
 
Beyond designing a model architecture which uses deep learning to tackle a time series problem, the 
aim of the source paper was to also design an architecture with interpretable outputs that can be used 
by practitioners in very much the same way as traditional decomposition techniques such as the 
“seasonality-trend-level” approach (Oreshkin, et al., 2019). 
 
Below are some key features of the N-BEATS model architecture: 

1. It is a deep neural architecture based on backward and forward residual links and a very deep 
stack of fully connected layers (Oreshkin, et al., 2019).  The model architecture is made up of 
stacks which are in turn made up of blocks.  Each block produces a backcast residual and 
partial forecast with the aim of iteratively improving the prior input value and augment the 
future value respectively within the forecasting process.  For more details of the underlying 
architecture, please see Section 3.2. 

2. One of the aims of an N-BEATS model architecture is to ensure underlying patterns in the 
data are interpretable (i.e. understandable) for users, where the model can infer an underlying 
trend and seasonality pattern within any given time series data set. 

For a high-level introductory summary of N-BEATS, please see for example an article published on the  
Towards Data Science website (Dancker, 2024). 
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3.2 Deeper dive into generalised N-BEATS model architecture 

Below we look at the generalised N-BEATS model architecture in more detail.  We summarise here 
some of the key points raised from the source paper (Oreshkin, et al., 2019) and use the same 
notation as per the source paper when presenting formulae. 

The generalised model architecture is based on the following principles (Oreshkin, et al., 2019): 

1. It should be simple and generic, yet expressive (deep). 

2. It should not rely on time series-specific feature engineering or input scaling.  

3. The outputs should be extendable towards making its outputs human interpretable. 

The first two allow a user to set up a time series forecasting model based on a pure deep learning 
architecture.  

Figure 2 shows a generalised overview of the architecture design underlying N-BEATS model 
architecture.  The figure is taken directly from the source paper. 

Figure 2: Generalised N-BEATS architecture - Source (Oreshkin, et al., 2019). 
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We summarise below an overview of the N-BEATS architecture: 

1. Basic building blocks consist of hidden layers each of several neurons, which are fully 
connected. The outputs from this structure can be further extended to incorporate basis 
functions which allow for time series features such as seasonality and trends.  The basic 
building block is represented by the blue box on the left in Figure 2, which illustrates 4 hidden 
layers. 

2. These basic building blocks in turn form a stack, which take the residual backcasts from the 
prior block and cumulate the partial trend forecasts outputs.  This is represented by the middle 
box in Figure 2, which illustrates K basic building blocks. 

3. In a similar fashion, the residual backcasts from the prior stack feed into later stacks, and then 
cumulate the partial trend forecasts to an overall global forecast i.e. the overall model output.  
This is represented by the box towards the right in Figure 2 earlier, which illustrates M stacks 
in total. 

The above technique of residuals and partial forecasts form part of doubly residual stacking.  This is 
discussed further in Section 3.2.2 below. 

3.2.1 Basic building block 

The basic building blocks generate a backcast and forecast as previously mentioned.  The backcast 
can be viewed as iterative adjustments to the input vectors via residuals, whilst the forecast from each 
basic building block can be viewed as a partial forecast which is cumulated and form part of the overall 
global forecast.  

Focussing on the l-th basic building block, as per the source paper (Oreshkin, et al., 2019): each basic 
building block has a fork architecture which takes an input vector (or residual outputs from a prior 
basic building block) 𝒙𝒍 and produces two outputs: 𝒙𝑙̂ i.e. the block’s best estimate of 𝒙𝒍 and the 
block’s forward forecast 𝒚𝑙̂.  The input of the very first block in the model is the original data input.  The 
remaining basic building block inputs are residual outputs from a prior basic building block, and can be 
thought of as running a sequential analysis of the input signal (Oreshkin, et al., 2019).  See Section 
3.2.2 for more details. 

The internal structure of a basic building block broadly consists of two sections: i. a fully connected 
section; and ii. a basis layer section.   

The fully connected layer produces backward (backcast) and forward (forecast) predictors, 𝜃𝑙
𝑏 and 

𝜃𝑙
𝑓respectively, of expansion coefficients. The predictors determine how much each basis function 

contributes to the overall approximation of the function.  Please see Section 3.2.1(b) for more details 
on basis function. 

The above two sections of the internal structure of a basic building block are discussed in more detail 
immediately below in Sections 3.2.1(a) and 3.2.1(b). 
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3.2.1(a)  Fully connected section 

Using the same formulae notation and architecture discussed in the source paper (Oreshkin, et al., 
2019) which has four hidden layers, the equations within the l-th basic building block are as follows: 

• 𝒉𝑙,1 =  FC𝑙,1(𝒙𝑙) , 𝒉𝑙,2 =  FC𝑙,2(𝒉𝑙,1) , 𝒉𝑙,3 =  FC𝑙,3(𝒉𝑙,2) , 𝒉𝑙,4 =  FC𝑙,4(𝒉𝑙,3), where 𝒉𝑙,𝑖 represents 
the i-th hidden layer in the l-th block, FC𝑙,𝑖 represents the i-th fully connected layer in the l-th 
block, and 𝒙𝑙 is the input vector for the l-th block.  

• 𝜃𝑙
𝑏 =  𝐿𝐼𝑁𝐸𝐴𝑅𝑙

𝑏(𝒉𝑙,4) and 𝜃𝑙
𝑓 =  𝐿𝐼𝑁𝐸𝐴𝑅𝑙

𝑓(𝒉𝑙,4), where 𝒉𝑙,𝑖, 𝜃𝑙
𝑏 and 𝜃𝑙

𝑓 are as per earlier. 
LINEAR is a linear projection layer i.e. 𝜃𝑙

𝑏 =  𝑊𝑙
𝑏(𝒉𝑙,4) and 𝜃𝑙

𝑓 =  𝑊𝑙
𝑓(𝒉𝑙,4) with the subscript l 

representing the l-th block, the superscripts b and f representing backcast and forecast 
respectively, and W is a weight matrix active on a hidden layer. 

For the purposes of the source paper, FC is a standard fully connected layer with a relu activation 
function i.e. 𝒉𝑙,1 =  𝑅𝐸𝐿𝑈 (𝑊𝑙,1𝒙𝑙 + 𝒃𝑙,1), where 𝑊𝑙,1 represents the weight vector connecting the input 

𝒙𝑙 to the first hidden layer in the l-th block and 𝒃𝑙,1 is the bias term for the first hidden layer in the l-th 
block. 

3.2.1(b)  Basis layer section 

The basis layer maps the backcast and forecast expansion coefficients 𝜃𝑙
𝑏 and 𝜃𝑙

𝑓to outputs, where the 
partial output 𝒚𝑙̂ =  𝑔𝑙

𝑓(𝜃𝑙
𝑓) and the residual output 𝒙𝑙̂ =  𝑔𝑙

𝑏(𝜃𝑙
𝑏).  The basis functions 𝑔𝑙

𝑏 and 𝑔𝑙
𝑓 are for 

backcast and forecast respectively. 

More generally, expansion coefficients are parameters which are learnt during the training process.  
When combined with basis functions, they help capture any underlying patterns or features in a time 
series data set such as a trend, an anomaly or seasonal patterns.  Examples of basis functions 
include polynomial, Fourier, wavelet and Gaussian functions.   

3.2.2 Doubly residual stacking 

A unique feature of the N-BEATS model architecture is the concept of doubly residual stacking.  
Instead of a single residual branch of outputs, the architecture proposes two branches as mentioned: 
one for a backcast residual and one for a partial forecast. Mathematically, we represent this as: 
 

𝒙𝑙 = 𝒙𝑙−1 − 𝒙𝑙−1̂ , 𝒚̂ = ∑ 𝒚𝑙̂𝑙 , 
 
where  𝒙𝑙 and 𝒙𝑙−1̂  are defined earlier in Section 3.2.1, 𝒚̂ is the global forecast i.e. overall model output 
which is the sum of individual 𝒚𝑙̂ .  Each 𝒚𝑙̂ can be viewed as a partial forecast.  
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3.2.3 Interpretability 

There are 2 types of configurations or design patterns for an N-BEATS architecture: 
 

1. Generic architecture, which does not assume any specific underlying time series model and 
relies on a generalised deep learning approach. 
 

2. Interpretable architecture, which is an augmented model that often includes a trend and 
seasonality model to the generalised N-BEATS architecture discussed earlier for a time series 
forecasting problem. 

 
For the purposes of this paper, we have focussed on the first configuration i.e. generic architecture as 
the aim of this paper is to seek a model architecture which accurately predicts the time series future 
values without any further input by the modeller or prior knowledge of any underlying time series 
features from the modeller. 
 
For more details on the above, and other considerations, please see the source paper (Oreshkin, et 
al., 2019). 

3.2.4 Comparison with other model architectures 

In Table 2, we provide a high-level comparison of the N-BEATS architecture versus DNNs, and 
LSTMs / GRUs.  Please note that these are generalised comments based on experience and the 
comparison table below may differ for different data sets, problems and scenarios. 

 Table 2: Comparison of N-BEATS model architecture. 

Model architecture DNN LSTM, GRU N-BEATS 
Neural network type Feedforward Recurrent Feedforward 
Handles long-term memory No Yes Yes – via 

backcasting and 
forecasting 

Complexity  Low Medium High 
Computational resources Low Medium High 
Indicative time taken to train 
model in Google Colab based on 
data set and methodology 
discussed in this paper (epochs 
and Optuna trials may vary) 

Up to c.15 mins Up to c.30 mins c.3 to 4 hours 

Performance  Varies though better 
on short sequences 

Varies though better 
on long sequences 

Excellent for  
time series 

Interpretability Low Medium High 
Typical usage Wide range of 

problems 
Sequential data e.g. 
Sentiment analysis, 

Language 
modelling, Speech 

recognition 

Time series 
forecasting 

Practical considerations Easy to implement Better for tasks 
requiring 

understanding of 
long-term 

dependencies 

Highly effective for 
complex time series 

forecasting tasks 
where  

interpretability and 
performance are 

crucial 
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3.3 Model approach used and training the model 

Below we give a brief overview of our code implementation of the N-BEATS model. 

3.3.1 Code background 

The underlying basis of our code for the N-BEATS model is taken from Zero to Mastery TensorFlow 
for Deep Learning Book (Bourke, 2023) and has been adapted for our analysis, where we look at a 
general N-BEATS architecture. We vary the number of layers within each block and the number of 
blocks per stack but set the total number of stacks equal to 1 (i.e. M is 1 in Figure 2). This is in part to 
simplify the trained model architecture given that the time taken to train such a model was close to 4 
hours. Further, in doing so, we do not believe that taking such an approach would materially impact 
any overall conclusion, as effectively adding another stack would repeat a similar iterative fine-tuning 
process and potentially the hyperparameter optimisation could compensate by increasing the number 
of blocks in the single stack. 

The original authors of the N-BEATS model also extend their analysis to allow for an ensemble 
technique (using multiple different loss functions and multiple different lookback periods in Figure 2) to 
make predictions when testing on M4 dataset. To retain consistency with the approach taken with 
other models within our initial paper, we have not extended our analysis to allow for such ensemble 
techniques.    

We have assumed the same underlying architecture per block within each stack e.g. the same number 
of hidden layers within each block.  Similarly, we have assumed the same underlying architecture for 
each hidden layer within each block e.g. number of neurons, activation function and L2 loss 
regularisation parameter.  The output layer from the block is a generalised dense layer, each with the 
same number of neurons in effect as the total combined length of the input window and output 
horizon.  Similarly, we have assumed that all output layers have the same activation function, though 
this may differ to the hidden layers above. 

Similar to our initial paper, we have used the same underlying data and training / validation / test splits 
within the data to train our model.  We have run our code in Google Colab, using similar libraries 
including Tensorfow and Keras as per our initial paper.  For hyperparameter optimisation, we have 
again used Optuna.  For an in-depth discussion on this, please see our initial paper (Dey, 2024). 

3.3.2 Hyperparameter optimisation 

As mentioned, we have used Optuna for hyperparameter optimisation.  Below we list some key search 
spaces used within our hyperparameter optimisation. 

1. The number of epochs was set to 400. 

2. The number of trials within Optuna was set to 30. 

3. The batch size for the input data was set to 128. 

4. The activation list was as follows: elu, gelu, linear, relu, sigmoid, swish and tanh. 
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5. The specific search space for each N-BEATS block includes: 

a. Number of neurons in each hidden layer from 4 to 512 at steps of 4. 

b. Number of hidden layers from 1 to 4 at steps of 1. 

i. As mentioned earlier, we have assumed all hidden layers have the same 
underlying architecture e.g. the same number of neurons, same activation 
function and same L2 regularisation. 

c. L2 regularisation with a search space of 1e-5 to 1e-1. 

d. Output theta layer or basis layer is a generalised deep layer. 

i. The number of neurons is set equal to the theta size – in effect the combined 
length is the window size and horizon size for this analysis.  

ii. The activation function from the activation list above.  No L2 regularisation 
function was applied to this layer. 

iii. No further adjustments were made for seasonality and trend i.e. via basis 
functions, as previously mentioned. 

6. Specific search space for number of N-BEATS blocks per stack from 2 to 30 at steps of 2. 

7. Similar to the source paper, the model was compiled on a loss function of Mean Absolute 
Error (MAE) using an Adam optimiser with a learning rate search space of 1e-5 to 1e-1. 
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3.3.3 Training the model 

Below is a loss history curve based on training one of the models, using the search space, number of 
epochs and number of trials in Optuna as mentioned in Section 3.3.2. 

Figure 3: Training and validation loss curves  
(Output from Google Colab). 

 

As we would expect, the model loss decreases as the number of epochs increases, suggesting that 
the model is able to converge to a solution.  
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Similarly, we have used the open source Keras visualizer library to demonstrate the underlying 
architecture of the trained model in Figure 4.  Please note that we have taken a snippet of the first few 
blocks and initial stacks, given the size of the overall final trained model.   

The visualisation tool in general gives an alternative simplified representation of any final neural 
network model architecture. Further, given that we have generalised our code and set the overall 
number of stacks equal to 1 as mentioned earlier, there are cosmetic differences in Figure 4 when 
compared with Figure 2. 

Figure 4: Snippet of the final trained N-BEATS model architecture using Keras visualizer 
(Output from Google Colab). 

 

In Figure 4, the Keras visualisation tool helps visualise basic building blocks (represented by 
“NBeatsBlock”) showing: 

1. subtraction (represented by “Subtract” in Figure 4) to represent the process of residuals or 
backcasts; and 

2. additions (represented by “Add” in Figure 4)  to represent the process of partial forecasts. 

The final trained model (with an input window of 1 day) has over 4 million trainable parameters (i.e. 
weights and biases).  As a comparison, Model 1 from Appendix 3 in (Dey, 2024) which is a DNN 
model, has 625 trainable parameters. Similarly, Model 6 from Appendix 3 in (Dey, 2024), which is an 
LSTM model, has 47,629 trainable parameters. 
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3.3.4 Model outputs and observations 

The source paper (Oreshkin, et al., 2019) mentions that the input length of the window is typically set 
to a multiple of the length of the output horizon H, between 2H and 7H.  For the purposes of this 
paper, we have trained the model setting this input length to a multiple of one (1 times) to align with our 
initial paper (Dey, 2024), two (2 times) and five (5 times)  - in order to adhere to the recommendation 
above and in the source paper (Oreshkin, et al., 2019), as well as our analysis in Section 4 of this 
paper.  The output horizon is as per the initial paper i.e. 1 day. 

In Table 3, we compare the performance of the trained N-BEATS models, which have been trained on 
the same data but on input windows of 1, 2 and 5 days, and with the same output horizon of 1 day. 

Table 3: Comparison of performance measure, between the Baseline model and N-BEATS,  
based on MAE and MAPE, varying the input window between 1, 2 and 5 days. 

 

Performance  
measure 

Baseline 

(Window =  
1 day) 

N-BEATS 

(Window =  
1 day) 

N-BEATS 

(Window =  
2 days) 

N-BEATS 

(Window =  
5 days) 

MAE 

(3 d.p.) 
0.610 0.620 0.662 0.657 

Difference from Baseline MAE 

(3 d.p.) 
- +0.010 +0.052 +0.047 

MAPE 

(3 d.p.) 
0.497% 0.505% 0.539% 0.536% 

Difference from Baseline MAPE 

(3 d.p.) 
- +0.008% +0.042% +0.039% 

Though the N-BEATS models performed relatively accurately, based on the data set, split of data 
between training / validation / test, and hyperparameter optimisation mentioned in Section 3.3.2, there 
is no improvement to the Baseline for each of our N-BEATS models based on either MAE and MAPE 
measures on the test data set.  The model trained on a 5-day input window marginally performs better 
than the model trained on a 2-day input window.  However, the model trained on a 1-day input window 
outperforms the N-BEATS models trained on a 2-day and 5-day input window.  All trained models 
perform marginally worse than the Baseline model.  Hence, the overall results are inconclusive. 
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One potential area of future study is to incorporate ensemble techniques as per the original authors of 
N-BEATS as mentioned in Section 3.3.1, as well as allow for the number of stacks to vary during 
hyperparameter optimisation when training the model.  
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Section 4: Widening the window 
4.1 Introduction 

We now change the focus of our analysis and widen the input window of data going into our models 
when training, validating and testing with the aim of hopefully improving the model accuracy, as we 
are looking to provide more information to the models to recognise any underlying potential patterns 
and dependencies within the data.  Please note that we revisit the majority of the original neural 
network architectures discussed in our initial paper (Dey, 2024), though have excluded return 
sequence is true models as we are predicting 1 day into the future in this paper.  We have also 
excluded XGBoost in our analysis in this Section as previously mentioned, given that this is a 
decision-tree library and not based on any underlying neural network architecture.  

For this Section, we have used various chart functions from the Python-based, open source 
statsmodels library.  For more details on this library, please see here: https://www.statsmodels.org/.  

4.2 Autocorrelation (ACF) and Partial autocorrelation (PACF) plots 

We have used the seasonal_decompose function from the statsmodels library to separate potential 
trend lines, seasonality and residual plots across the full data set discussed in Section 2.  These can 
be viewed further in Figure 5.  We have analysed the daily log returns of the underlying data set to 
infer potential lags in the data and correlations, and hence help determine alternative window sizes. 

Figure 5: Seasonal, trend and residual plot outputs from the data set 
(Output from Google Colab). 

 

Within Figure 5, “index” represents the daily log returns of the data set, “trend” represents any 
underlying trend, “seasonal” represents any potential seasonal element and “resid” represents any 
unaccountable residual (after the trend and seasonal components have been accounted for).    

https://www.statsmodels.org/
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Using the built-in plot_acf and plot_pacf functions from the statsmodels library, we have created an 
autocorrelation (ACF) plot in Figure 6 and partial autocorrelation plot in Figure 7 respectively. 

Figure 6: Autocorrelation plot for data set mentioned in Section 2 
(Output from Google Colab). 

 

Figure 7: Partial autocorrelation plot for data set mentioned in Section 2 
(Output from Google Colab). 

 

Both plots can be used to infer a correlation between different lags.  For more general background to 
ACF and PACF plots, please see for example (Monigatti, 2022).  

Though there is a certain amount of subjectivity involved in terms of interpreting Figures 6 and 7, we 
could expect a 2-day historic lag in data to be representative of any potential underlying feature. 
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4.3 Window length to choose 

Based on the analysis in Section 4.2, the implied input window is 2 days.  Similarly, the window lag 
implied by (Peters, et al., 2022) is 5 days.  Strictly speaking, these lags are based on the daily log 
returns.  Reversing the log transformation implies a lag of c.7 working days and c.148 working days 
respectively.  The latter time period of 148 days is equivalent to around 6 to 7 months, and may 
indicate that the prior 2 quarters of annual data incorporate longer term market trend information, and 
hence may useful when producing better future predictions. 

Rerunning all models within this paper based on 7- and a sample on 148-day input windows resulted 
in worse performing models, using the same underlying conditions and predicting 1 day ahead, than if 
the input window was restricted to 5 days.  Hence, we have retained input windows of 2 and 5 days 
within this Section and paper, and not extended beyond 5 days.  Given that the data is per working 
day, intuitively 5 days may seem more appropriate.  The results from model outputs based on an input 
window of 7 and 148 days have not been included in this paper given the above.  

4.4 Training the models 

We have retrained the neural network models from our initial paper (Dey, 2024) based on a 2-day 
input window and 5-day input window.  The approach taken is as per the initial paper. 

4.5 Results from analysis of 2-day and 5-day input window 

We have summarised the MAE and MAPE results from different model runs for some of the model 
architectures originally analysed in our initial paper (Dey, 2024).  We have maintained the same 
labelling e.g. model number and abbreviated name, as per the initial paper (Dey, 2024).  For a full list 
of these models, please see Appendix 3. 
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Table 4 compares the performance based on MAE and MAPE for these different models, based on 
input windows of 1, 2 and 5 days. 

Table 4: Comparison performance of neural network models  
with 1, 2 and 5 days of input window information. 

Model 
number 

Abbreviated 
name 

Category Data input 
Window = 1 day Window = 2 days Window = 5 days 
MAE 

(3 d.p.) 
MAPE 
(3 d.p.) 

MAE 
(3 d.p.) 

 

MAPE 
(3 d.p.) 

MAE 
(3 d.p.) 

MAPE 
(3 d.p.) 

0 Baseline Baseline 0.610 0.497% - - - - 
1 DNN0 DNN 0.607 0.495% 0.739 0.602% 0.933 0.763% 
2 DNN1 0.627 0.511% 0.706 0.576% 0.948 0.773% 
3 DNN2 0.620 0.505% 1.320 1.085% 0.798 0.651% 
4 CNN0 CNN 0.619 0.504% 0.686 0.560% 0.992 0.811% 
5 CNN1 0.611 0.498% 0.705 0.575% 0.959 0.783% 
6 LSTM_0HL_F  

LSTM 
0.609 0.497% 0.769 0.627% 0.719 0.585% 

8 LSTM_1HL_F 0.617 0.503% 0.655 0.534% 0.667 0.545% 
10 GRU_0HL_F  

GRU 
0.632 0.514% 0.680 0.554% 0.647 0.528% 

12 GRU_1HL_F 0.638 0.519% 0.623 0.507% 0.643 0.524% 

We have retained the original Baseline which has been trained on an input window of 1 day across all 
comparison scenarios, given the existing level of accuracy / relative difficulty for other neural networks 
architecture models to materially outperform this.  As can be seen in Table 4, generally the GRU and 
LSTM models outperform CNN and DNN models, based on both a 2- and 5-day input window. 
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Table 5 repeats similar information, but compares the relative performance of a 2-day and 5-day input 
window against a 1-day input window for the same model i.e. the comparison is within the same row. 

Table 5: Comparison performance 2-day and 5-day input window  
against window of 1 day for the same model. 

Model 
number 

Abbreviated 
name 

Category Data input 
Window = 1 day Window = 2 days Window = 5 days 
MAE 

(3 d.p.) 
MAPE 
(3 d.p.) 

MAE 
(3 d.p.) 

 

MAPE 
(3 d.p.) 

MAE 
(3 d.p.) 

MAPE 
(3 d.p.) 

0 Baseline Baseline 0.610 0.497% - - - - 

1 DNN0 DNN 0.607 0.495% +0.132 +0.107% +0.326 +0.268% 
2 DNN1 0.627 0.511% +0.079 +0.065% +0.321 +0.262% 
3 DNN2 0.620 0.505% +0.700 +0.580% +0.178 +0.146% 
4 CNN0 CNN 0.619 0.504% +0.067 +0.056% +0.373 +0.307% 
5 CNN1 0.611 0.498% +0.094 +0.077% +0.348 +0.285% 
6 LSTM_0HL_F  

LSTM 
0.609 0.497% +0.160 +0.130% +0.110 +0.088% 

8 LSTM_1HL_F 0.617 0.503% +0.038 +0.031% +0.050 +0.042% 
10 GRU_0HL_F  

GRU 
0.632 0.514% +0.048 +0.040% +0.015 +0.014% 

12 GRU_1HL_F 0.638 0.519% -0.015 -0.012% +0.005 +0.005% 
 

The pink colour boxes in Table 5 indicate that the model has performed worse than the corresponding 
model trained on a window of 1-day input.  The yellow colour boxes in Table 5 indicate that the model 
has performed worse than the corresponding same model architecture trained on a window of 1-day 
input, but better than the corresponding model architecture trained on a window of 2-day input.  The 
green colour boxes in Table 5 indicate that the model has performed better than the corresponding 
same model architecture trained on a window of 1-day input. 

As can be seen in Table 5, model 12 (a GRU model with 1 hidden layer) outperforms with a 2-day 
input window compared to 1-day input window.  The remaining models perform worse if the input 
window is expanded from 1 day to 2 or 5 days. 

Models 3, 6 and 10 performed better with a 5-day input window versus a 2-day input window.  
However, as per earlier, the differences are relatively similar and hence the overall results are 
inconclusive. 
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Table 6 repeats similar information, but compares the relative performance of increasing the data input 
window to 2 and 5 days respectively, against the Baseline across all scenarios (which was trained with 
an input window of 1 day). 

Table 6: Comparison performance of each neural network model against Baseline. 

Model 
number 

Abbreviated 
name 

Category Data input 
Window = 1 day Window = 2 days Window = 5 days 
MAE 

(3 d.p.) 
MAPE 
(3 d.p.) 

MAE 
(3 d.p.) 

 

MAPE 
(3 d.p.) 

MAE 
(3 d.p.) 

MAPE 
(3 d.p.) 

0 Baseline Baseline 0.610 0.497% - - - - 

1 DNN0 DNN 0.607 0.495% +0.129 +0.105% +0.323 +0.266% 
2 DNN1 0.627 0.511% +0.096 +0.079% +0.338 +0.276% 
3 DNN2 0.620 0.505% +0.710 +0.588% +0.188 +0.154% 
4 CNN0 CNN 0.619 0.504% +0.076 +0.063% +0.382 +0.314% 
5 CNN1 0.611 0.498% +0.095 +0.078% +0.349 +0.286% 
6 LSTM_0HL_F  

LSTM 
0.609 0.497% +0.159 +0.130% +0.109 +0.088% 

8 LSTM_1HL_F 0.617 0.503% +0.045 +0.037% +0.057 +0.048% 
10 GRU_0HL_F  

GRU 
0.632 0.514% +0.070 +0.057% +0.037 +0.031% 

12 GRU_1HL_F 0.638 0.519% +0.013 +0.010% +0.033 +0.027% 
 

The colour coding within Table 6 is as per Table 5, but comparing relative performance against the 
Baseline performance across all scenarios. 

Models 3, 6 and 10 performed better with a 5-day input window versus a 2-day input window.  
However, as per earlier, the differences are relatively similar with all models performing worse than the 
Baseline.  Hence the overall results are inconclusive. 

4.6 Conclusions 

By increasing the input window from 1 day to 2 and 5 days, on the whole, there were no material 
improvements to the results. The differences in model performance (based on a MAPE measure) are 
relatively small and hence the overall results are inconclusive. 

The performance of increasing from 1 to 2 or 5 days did however produce relatively accurate models, 
with a MAPE of c.0.5% to c.1.1% across all models which were investigated. 
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Section 5: Conclusions and next 
steps 
5.1 Conclusions 

Based on our analysis, given the data range and training / validation / test splits of the S&P Green 
Bond Index and modelling approach discussed earlier, we can draw the following conclusions below. 

5.1.1 N-BEATS 

As observed, we trained a model based on the N-BEATS architecture in Section 3.  The outputs of 
each model (trained on an input window of 1, 2 and 5 days) did produce output forecasts for a 1-day 
horizon (i.e. the next day) which were relatively accurate, with the MAPE differing by c.+0.5% over the 
test range data set.  

However, the trained models did not outperform the Baseline model over the test data set.  The 
trained N-BEATS models differed from the Baseline results by up to c.+0.04% i.e. our findings are 
inconclusive.   
 
This may be indicative of the fact that the current Baseline is actually a good predictor in the first 
place, given that the relative low coefficient of variation of c.7.1% for the index across the full data set. 
Similarly, it may be indicative of the fact that the problem we are facing with the S&P Green Bond 
Index is as per any other stock price movement i.e. a random walk, where it is difficult to continually 
outperform any baseline model (Bourke, 2023).  

5.1.2 2-day lag and 5-day lag 

Expanding the input window from 1 day to 2 and 5 days respectively for the neural network 
architectures explored in the initial paper (Dey, 2024) did not result in an improvement with the 
performance relatively similar to the Baseline i.e. our findings are still inconclusive.  

5.2 Next steps 

The analysis to date has been based on a univariate analysis and simpler neural network 
architectures – such as DNNs, CNNs, LSTMs and GRUs, as discussed in the initial paper (Dey, 2024).  
We have further expanded this to a complex and cutting-edge architecture with N-BEATS. 

For future papers, other potential areas we may explore include: 

1. Explore other complex neural network architectures based on a univariate analysis e.g. 
Google’s TFT (Temporal Fusion Transformer) and temporal GNNs (Graph Neural Networks). 

2. Expanding our analysis to a multivariate analysis. 

3. Broaden the projection horizon from 1 day to 1 week or possibly 1 month into the future. 



IFoA Data Science, Sustainability & Climate Change Working Party 
Time series analysis of GSS bonds:  Part 2 – Further univariate analysis of S&P Green Bond Index, 
August 2024 
 

29 
© 2024 IFoA Proprietary and Copyright 

 
 

Appendix 1: Working Party members 
and acknowledgements 

Working Party members 

The Working Party is made up of two sub-groups: i. practitioners; and ii. academics. 

Below is a list of current Working Party members for the Practitioner Group, along with details of their 
position within the Working Party and corresponding LinkedIn link.  

Name Position LinkedIn 
Debashish Dey Chair Link 

Cem Öztürk Member Link 
Shubham Mehta Member Link 

Please note that this Working Party sits within the Lifelong Learning pillar of the IFoA.  For further 
details of the Data Science section of the IFoA, please see https://actuaries.org.uk/learn/lifelong-
learning. 

Acknowledgements 

Please see below acknowledgements for the review of the code and paper: 

• Code review by Cem Öztürk [Link]. 

• Technical review of paper by: 

o Dr Alexey Mashechkin [Link]. 

o Assoc. Prof. George Tzougas [Link]. 

• Review of graphs and tables within the paper by Shubham Mehta [Link]. 

 

https://uk.linkedin.com/in/debashish-dey-669025a3
http://linkedin.com/in/ozturkcemm
http://linkedin.com/in/mehta-shubham
https://actuaries.org.uk/learn/lifelong-learning
https://actuaries.org.uk/learn/lifelong-learning
http://linkedin.com/in/ozturkcemm
https://www.linkedin.com/in/alexey-mashechkin/
https://www.linkedin.com/in/george-tzougas-648711294/
http://linkedin.com/in/mehta-shubham


IFoA Data Science, Sustainability & Climate Change Working Party 
Time series analysis of GSS bonds:  Part 2 – Further univariate analysis of S&P Green Bond Index, 
August 2024 
 

 

30  
© 2024 IFoA Proprietary and Copyright 

 
 

Appendix 2: List of abbreviations 
Below is a list of abbreviations used within this paper. 
 
Abbreviation Explanation 

ARIMA AutoRegressive Integrated Moving Average 
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 

CNN Convolutional Neural Network 
DNN Deep Neural Network 
GNN Graph Neural Network 
GRU Gated Recurrent Unit 

GSS bonds Green, Social and Sustainability bonds 
IFoA Institute and Faculty of Actuaries 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 
MSCI Morgan Stanley Capital International 

N-BEATS Neural Basis Expansion Analysis for interpretable Time Series 
RNN Recurrent Neural Network 
S&P Standard and Poor’s 
TFT Temporal Fusion Transformer 
TPE Tree-structure Parzen Estimator 
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Appendix 3: Summary of models 
analysed in the initial paper 
Below is a summary of the models analysed in the initial paper (Dey, 2024), with a brief description of 
the underlying model architecture.   

Model Abbreviated 
name 

Category Description of architecture 

0 Baseline Baseline Baseline model which assumes today’s value is the 
same as yesterday’s value.  

1 DNN0 DNN Feedforward artificial neural network with one hidden 
dense layer. 

2 DNN1 Feedforward artificial neural network with two hidden 
dense layers. 

3 DNN2 Feedforward artificial neural network with three hidden 
dense layers. 

4 CNN0 CNN Convolutional neural network, with one Conv1D layer 
and no additional hidden layers. 

5 CNN1 Convolutional neural network, with one Conv1D layer 
and one hidden dense layer. 

6 LSTM_0HL_F  
LSTM 

LSTM neural network, with one LSTM layer, return 
sequence set to false, and no additional hidden layers. 

7 LSTM_0HL_T LSTM neural network, with one LSTM layer, return 
sequence set to true, and no additional hidden layers. 

8 LSTM_1HL_F LSTM neural network, with one LSTM layer, return 
sequence set to false, and one additional hidden 
dense layer. 

9 LSTM_1HL_T LSTM neural network, with one LSTM layer, return 
sequence set to true, and one additional hidden dense 
layer. 

10 GRU_0HL_F  
GRU 

GRU neural network, with one GRU layer, return 
sequence set to false, and no additional hidden layers. 

11 GRU_0HL_T GRU neural network, with one GRU layer, return 
sequence set to true, and no additional hidden dense 
layers. 

12 GRU_1HL_F GRU neural network, with one GRU layer, return 
sequence set to false, and one additional hidden 
dense layer. 

13 GRU_1HL_T GRU neural network, with one GRU layer, return 
sequence set to true, and one additional hidden dense 
layer. 

14 XGBoost XGBoost XGBoost model.  Hyperparameters analysed are 
described earlier in this paper. 
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Appendix 4: Useful links 
Below is a list of links which we hope that the reader finds useful. 

• IBM’s introductory series on neural networks:  
https://www.ibm.com/topics/neural-networks  

• IFoA’s Certificate in Data Science programme:  
https://www.actuaries.org.uk/news-and-insights/news/data-science-credential 

• IFoA’s Data Science Lifelong Learning page:  
https://actuaries.org.uk/learn/lifelong-learning/data-science/  

• Google Tensorflow’s tutorial on time series: 
https://www.tensorflow.org/tutorials/structured_data/time_series  

 

  

https://www.ibm.com/topics/neural-networks
https://www.actuaries.org.uk/news-and-insights/news/data-science-credential
https://actuaries.org.uk/learn/lifelong-learning/data-science/
https://www.tensorflow.org/tutorials/structured_data/time_series
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