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MODELLING EXTREME CREDIT EVENTS 

 

A report from the Extreme Events Working Party 
 
By R. Frankland, A. Holtham, P. Jakhria, J. Kingdom, O. Lockwood , A. 

Smith, E. Varnell 

 
1. INTRODUCTION 
 

1.1 As part of their capital modelling, insurance companies need to project extreme 

market events, such as falls in equity markets or changes in credit markets. These 

market stresses are particularly important in the context of FSA’s ICAS regime and 

in the forthcoming Solvency II regime. Under both regimes, insurers are required to 

hold enough capital to be able to withstand a ‘1-in-200’ year event over a one-year 

period. That is, over a one-year horizon, the probability that an insurer’s ‘own funds’ 

become negative is at most 0.5%
1
. 

 

1.2 This report focuses on credit risk and aims to illustrate possible methods to model a 

distribution of corporate bond spreads over a one-year time horizon with the aim of 

coming to a view on extreme outcomes over a one year period. 

 
2. PROPERTIES / ISSUES OF CORPORATE BONDS 
 

2.1 Taking a step back, it is interesting to draw parallels with equity risk, where there is a 

large degree of consistency between equity benchmarks amongst insurers (e.g. most UK 

insurers are very likely to have either the FTSE All Share or MSCI UK as the benchmark 

for UK Equity portfolio). However, this does not appear to be the case for fixed interest, 

where there is a wide range of credit portfolios benchmarks held by insurers. 

 

2.2 This is reflected in the risk modelling and capital calculations within the insurance 

industry. For example the CEIOPS consultation papers on the draft advice for the level 2 

implementing measures on Solvency II published a single ‘standard formula’ stress for 

global equities, whereas the credit stresses were split over credit ratings, durations and 

different structures within credit
2
. 

 

2.3 This is partly the result of multi-dimensionality apparent within credit risk, as the 

portfolios can be differentiated by duration, credit rating and type of structure in addition 

to the sector and geographical splits that exist within equity space. 

 

                                                 
1
 This is a very broad simplification, as there are many technical differences in the interpretation. For 

example the interpretation of how the ‘liquidity premium’ or ‘matching premium’ on corporate bonds 

spreads is treated is differently under each regime. 
2
 It should be noted that most major insurance firms will be aiming to use an internal model under Solvency 

II. However, we would expect at least the same level of granularity under an internal model. 
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2.4 As such, there is a lot of debate on the required level of granularity of corporate bond 

modelling, particularly for the purposes of defining stresses. On the one hand, we would 

like to be able to precisely capture the different dimensions of credit risk. However on the 

other hand, as we shall see in the next section, we are somewhat constrained on the 

quality of conclusions by the availability of long term historical data and need to avoid 

spurious accuracy. 

 

2.5 We also note that, in general, corporate bond returns can be decomposed into three 

elements; interest rate movements, spread movements and defaults / migrations
3
. 

 

2.6 It is often convenient to separate the interest rate risk element from credit risk as it 

affects both sides of the balance sheet – movements in risk-free interest rates cause 

changes in asset values and changes to the discount rates applied to liabilities. This is 

largely the case in UK. Also, the interest rate derivatives market is extremely large and 

liquid, and hedging via interest rate derivatives is relatively cheap and well understood 

within the insurance industry. As a result, the interest rate risk in corporate bond 

portfolios is often hedged to a large extent, especially within annuity business. 

 

2.7 The richness of long term data available for migrations and defaults can vary 

considerably. While aggregated annual transition matrices are available in the public 

domain, more detailed data can be obtained, at a fee, from other sources like the three 

major rating agencies (Moody’s, S&P and Fitch). Depending on the product purchased, 

this data can be quite extensive – for example, the Moody’s Default and Recovery 

Database can offer data on the default and migration experience of individual issuers 

from the 1920s onwards (although questions exist on the quality and relevance of data of 

such age). 

 

2.8 Various methods exist to analyse the risk from credit migrations and defaults, but we 

do not explore these in this paper. One potential way of looking at this risk would be 

through scenario testing, based on data from previous stressed credit events (we know for 

example that the ABI has commissioned such studies for its members in the past). 

 

2.9 Consequently, we have focused the bulk of our modelling and analysis towards 

coming up with extreme (1 in 200) credit spread stresses over a period of 1 year. 

 

2.10 An alternative approach which we partly investigate in this paper would be to work 

with total return indices which should capture all elements of credit risk, depending on 

the details of how the index is constructed. The only drawback of this approach is that the 

conclusions are constrained by the lack of a suitably long period of historical data. 

                                                 
3
 It should be noted that this list is not exhaustive, as we can also have other credit events, such as credit 

restructurings, exercising of call options, etc. (although these may still be classified as defaults by rating 

agencies using different recovery values compared  to more conventional defaults) 
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3. CHOICE OF DATASET 

 
3.1 There were three main datasets that we considered, summarised below: 

 

Moody’s / Federal Reserve 

 

This comprises of spread (over treasuries) and yield data of long-dated investment 

grade bonds. The data is based on Seasoned Bonds with Remaining Maturities of 

at Least 20 Years. This is derived from pricing data on a regularly-replenished 

population of nearly 90 seasoned corporate bonds in the US market, each with 

current outstanding over $100 million.  

 

The bonds have maturities as close as possible to 30 years and they are dropped 

from the list if their remaining life falls below 20 years or if their credit ratings 

change. Bonds with deep discounts or steep premiums to par are generally 

excluded. All yields are yield-to-maturity calculated on a semi-annual 

compounding basis. Each observation is an unweighted average, with Average 

Corporate Yields representing the unweighted average of the corresponding 

Average Industrial and Average Public Utility observations. 

 

The indices are available monthly from 1919, and daily from 1997. 

 

Merrill Lynch - Broad Market Index (UK00) 

 

The Broad Market Index tracks the performance of investment grade public debt 

of Sovereign, Quasi-Government and Corporate issuers. It includes collateralized, 

securitized and unsecured investment grade bonds having at least one year 

remaining term to maturity, a fixed coupon schedule and a stated minimum 

amount outstanding (for example GBP 500 million for Gilts and GBP 100 million 

for all other securities.) 

 

Bonds must be rated investment grade based on a composite of Moody’s and 

S&P. In addition to their own rating requirements, qualifying issuers (other than 

Supranationals) must be domiciled in a country having an investment grade 

foreign currency long-term debt rating (composite of Moody’s and S&P).  

 

The index is re-balanced on the last calendar day of the month. Issues that meet 

the qualifying criteria are included in the index for the following month. Issues 

that no longer meet the criteria during the course of the month remain in the index 

until the next month-end re-balancing at which point they are dropped from the 

index.  

 

A wide range of indices are available, including USD, EUR and GBP 

denominations. Additional sub-indices are available that segment the Index by 

maturity, sector and rating. The inception date of the Index is December 31, 1996 

for GBP, 31 December 1995 for EUR and 31 December 1988 for USD. 
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iBoxx 

 

Markit iBoxx indices cover the cash bond market. They comprise liquid 

investment grade issues. Underlying bond prices and indices are available in real 

time for EUR and GBP and end of day for USD and Asia. The indices are sorted 

by type of issuer, maturity band, credit rating and sector. Most Markit iBoxx bond 

indices are rebalanced monthly. 

 

Markit iBoxx indices are rules-based to ensure they are objective and replicable 

(please see appendix 1). The selection criteria used to determine which bonds are 

included, mean that the indices represent the part of the market that is tradable 

and thus available to investors and asset managers.  

 

The iBoxx GBP benchmark indices comprise an overall and two major index sub-

groups for  the gilts and non-gilts sectors. The non-gilts group is detailed further 

into sub-groups for Sovereigns & Sub-Sovereigns, Collateralized and Corporates.  

 

The Corporates index includes rating and sector sub-indices. A further split is 

made into financial and non-financial sectors (including the economic and market 

sectors, rating and maturity indices) with senior and subordinated debt indices 

being calculated for Financials and Non-Financials and for each financial sub-

sector. Maturity indices are published for most index sub-groups. 

 

The inception date for all the main iBoxx corporate bond indices is 11/04/2002 

(although some indices start from 01/01/1998). 

 

 

3.2 Given the main purpose of our research, the longest dataset was our favoured choice 

as we felt that it was by far the most credible with which to elicit an extreme event over 

one year. It also covered all of the major global economic events over the past century, 

including the oil price shocks in the 1970s, the ‘Great Depression’ and two world wars in 

addition to the more recent crises of the 21
st
 century that are captured in the iBoxx and 

Merrill Lynch datasets. 

 

3.3. The only drawback with the Moody’s data is in terms of granularity as the data is not 

available for different durations. For that reason, we have also spent some time analysing 

the iBoxx dataset. 
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4. EMPERICAL OBSERVATIONS 

 

 
 

4.1 It is worth spending some time analysing the salient features of this graphical time 

series, which upon inspection appears to exhibit some stylized properties: 

 

 No obvious trend is observed in the dataset. 

 The spreads of different ratings behave largely in the same way; they are highly, but 

not perfectly correlated.  

 Also the relative sizes of the spreads are largely maintained (i.e. BBB > A > AA > 

AAA) over the data period. Thus it appears that the ratings are good indicators of 

relative
4
 credit quality. 

 However, we may also notice the apparent existence of different credit regimes. For 

example the 20-year period post 1945 seems to have fundamentally different 

properties to the periods before and after. 

 It is not immediately obvious, but the size of spread movements does appear to be 

linked to the spread levels. 

 Finally, the occurrence of two extreme events stands out in the dataset; the Great 

Depression of 1929, and the more recent ‘Credit Crunch’ of 2008. 

 

4.2 Another useful exercise is to simply look at the worst historical movements for the 

different credit ratings. The graph below shows the 10 most extreme movements in both 

directions for each of the data series, in spread space as well as yield space. Analysing the 

                                                 
4
 However, the absolute volatility appears to vary, as explained in the next point 
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data in yield space means that the 1930s and 2008 are less dominant, due to a number of 

large movements in the 1970s and 1980s. 

 
4.3 We can extend this concept to a one year timeframe by considering the worst 

historical movements over (non-overlapping) 12 month and 18 month periods. This also 

helps to put the 2008 spread movements into context. 

 

Max Annual Changes AAA   AA   A   BBB   

1st 124 2008 156 2008 224 2008 346 2008 

2nd 114 1986 109 1980 158 1932 271 1932 

3rd 69 1998 109 1986 138 1982 193 1975 

 

Max Changes over 
18 months 

AAA  AA  A  BBB  

1st 161 2008 197 2008 270 2008 409 2008 

2nd 98 1986 98 1980 187 1932 340 1932 

3rd 84 1975 84 1932 156 1980 202 1975 

 

4.4 If we consider the combined impact on all investment grade credit, the credit crisis 

constitutes the worst period over the 90 years of spread data! 

 

4.5 Analysing the figures above, it would be tempting to conclude that the 2008 credit 

crunch arguably constitutes the worst period for credit in over 90 years of data. However, 

we need to be aware of two important elements: 
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(a) The data above excludes the impact of credit defaults and downgrades. The 

resultant impact on defaults in the recent crisis has been less onerous, so far, 

compared to the decade following the 1930s. 

 

(b) The data above relates to bonds with US long maturities only There were 

significantly greater spread stresses for shorted dated bonds in the recent crises. 

Spreads on shorter-dated bonds may have increased by more or less in the 1930s 

compared to the recent credit crunch period, although as we do not have the data 

to conclude either way. 

 

(c) Sectors – The Moody’s spread values represent the average of the Industrial 

and Public Utility components. Thus the shock to the railroad sector would have 

been fully included for the Great Depression, but not reflect the full impact of the 

shock to the financial sector in the recent crisis. 
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5. MODELLING 

 

5.1 The next step was to address each of the stylized attributes, discussed in 4.1, and 

define a model. This would then be used together with Monte Carlo simulation to derive 

approximate spread stresses for different percentiles. A summary of the attributes is 

given below 

 No obvious trend  

 Lack of normality 

 Volatility is related to spread 

 Existence of different regimes 

 Spreads of different ratings are connected 

 

5.2 A naïve approach to estimating percentiles would be to choose the frequency so as to 

start off with a sufficiently large dataset (i.e. monthly in our case would give us approx 

1000 points), empirically calculate the required percentile of the first differences and 

finally annualise them using an approximation, the most common of which is 

multiplication by t . However this method makes fundamental assumptions on the 

properties of the first differences, in particular that they are independent, identically 

distributed and Gaussian. It can be shown that the spread time series violates all of these 

fundamental assumptions! 
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5.3 Testing the ‘identically distributed’ assumption: 

This is a crucial property to satisfy when analysing time series, as it effectively defines 

how much of the dataset is valid for ex-ante estimates of spread stresses. Unfortunately, 

we can show with historical spread data that assuming spread changes are identically 

distributed is also fundamentally flawed. One way of depicting this is to plot the 

(absolute) spread changes against the level of the spread. If the spread changes were 

identically distributed, we wouldn’t expect to find any relationship with the spread level. 

However, there is a clear indication that the absolute change increases with the level of 

the initial spread level, as can be seen from the graphs below. This is equivalent to the 

observation in 4.1 that the volatility of spread appears to have a clear link to the  level of 

spread.  
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5.4 Testing the independence assumption: 

We can also disprove the independence assumption by considering the autocorrelation of 

returns. Although there is no obvious autocorrelation of spread changes across the whole 

data set, this becomes significant when we consider absolute or squared changes instead, 

as can be seen in the graphs below. This means that although we may not be able to have 

a view on the direction of change based on recent history, it does give us information on 

the expected magnitude of the changes (i.e. that a large absolute change in the current 

period would tend to imply a large absolute change in the next period, and vice versa). 

This is evidenced in the following graph, which shows the ACF (Auto Correlation 

Function) with respect to absolute changes: 
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5.5 Testing the normality assumption: 

The Q-Q plots below clearly illustrate the existence of fat tails, and the results of the 

Shapiro Wilkie normality test tabulated below also provide fairly conclusive evidence of 

non-normality 
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Results from the Shapiro-Wilkie normality test: 

 AAA AA  A BBB 

P.value of S-W Test 2.82E-28 7.19E-29 8.98E-32 7.69E-38 

 

5.6 The intuitive idea for the modelling is, starting from first principles, to use the 

smallest number of transformations to correct the elements identified above and reduce 

the time series to independent, identically distributed random errors. This would then be 

assembled back up into a model to derive the spread stresses. 
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5.7 Converting the time-series into identically distributed elements is probably the most 

important as well as challenging task. The plots on the left-hand side of the graphic below 

carry out a least squares regression of the absolute change in spread verses the prevailing 

level of spreads. We can see a clear positive relationship in the un-transformed data, 

which tells us that the residuals are not identically distributed. 

 

5.8 It appears that the best approach to nullify this relationship between the change in 

spread and the level of spread is to take an appropriate transformation of the time series. 

Initial investigations appeared to show that the most appropriate transformation depended 

on the credit rating, and gradually changed as we move up the credit ratings, resulting in 

stronger transformations (lognormal) for the lower credit quality (BBB). Although the 

concept of the transformation is interesting phenomenon, it requires more thought to 

explain on an intuitive level and is certainly something which may be worth further 

investigation.  
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5.9 A nice by-product of the transformation is that the resulting distribution of error terms 

has a greatly improved symmetry as well. This means that the autocorrelation observed in 

(5.4) can be allowed for in a relatively straightforward manner. A simple approach is to 

separately model the magnitude and the direction, which enables us to allow for 

correlation of the magnitude but not direction in the Monte Carlo simulation. 
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5.10 The normality can also be allowed for by using the simulated uniform random 

numbers to sample from a bespoke cumulative distribution function. These can be created 

by using a combination of empirical error terms for the body and results from extreme 

value theory for the tails. Another allowance, given enough data would be to simply 

sample the error terms from the residuals of the initial model fitting process. 

 

5.11 The transformations do not fully allow for the existence of different regimes (i.e. 

looking at historical data suggests that the past can be broadly split into three distinct 

regimes). For this reason, combined with the doubts on the validity and robustness of 

very early data, our initial investigations were based on the past 50 years of data. 

 

5.12 Finally, we also need to make a decision on the frequency of data. Quarterly data 

provided a good trade-off between the size of the dataset and the extra approximations 

required when grossing up to annual stresses.  

 

5.13 An example set of results, based on simply using the 50-year dataset together with 

the methodology described above are shown below. Although the results would vary 

depending on the exact historical time period and methodology chosen, this gives a 

reasonably good overall picture of the dataset. The transformations used are identity, 

square root, cube root and log respectively.  

 

 
AAA AA A BBB 

Identity 121 140 176 242 

Square Root 155 162 200 249 

Cube Root 186 179 218 260 

Log 404 255 293 318 

 

5.14 It should be noted that, although some of the less visible parameters (i.e. 

autocorrelation of the direction and magnitude terms) should be informed by historical 

data, it is important to have an intuitive understanding for the values and apply a 

judgemental overlay. This may be relevant if we are deliberately aiming for a certain part 

of the distribution. 

 

5.15 There is also scope for some judgemental overlay regarding the current spread levels 

in relation to longer term equilibrium spread levels. Thus, for example, if the in-house 

economist function believes that current spreads are significantly above or below 

equilibrium levels and there is likely to be some mean reversion, this can explicitly be 

incorporated into the methodology. 

 

5.16 Finally, it should be noted that given we are using less than 200 years of data, there 

is still likely to be an element of spuriousness within the stresses, particularly when we 

consider individual credit ratings. As such there may be need for further smoothing 

across different percentiles and credit ratings. Also, it is advisable to run the results past 

sense checks from the in-house economists, who may spot an outlier result due to the 

spurious element described above. 
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5.17 Thus far, we have allowed for the existence of different regimes by deciding on the 

current regime and then using the appropriate subset of the historical data to calibrate our 

model. This may be a valid approximation in the current environment given that we are 

arguably in a volatile environment and focused on looking at upward spread shocks. 

However, this method is unlikely to have provided realistic shocks if we had used the 

historical data of a benign regime to calibrate shocks in early 2007. 

 

5.18 There are different possibilities for incorporating the concept of ‘regimes’ into the 

modelling. The obvious intuitive way is to have a finite set of regimes, with their own set 

of parameters and probabilities of transitioning from one regime to another. However, 

you can see that the calibration problem becomes exponentially complex and arguably 

spurious as one increases the number or regimes. Thus we should stick to a small and 

intuitive number of regimes. 
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6. FURTHER ANALYSIS 

 

6.1 We also analysed this problem using other datasets (iBoxx) as well as a number of 

other more complex time series models, in particular looking at the ARCH and GARCH 

family of models. 

 

6.2 ARCH, which stands for Autoregressive Conditional Heteroskedasticity, is a family 

of models that considers the variance of the current error terms to be a function of the 

variance of the previous error term(s). The working party did some exploratory work on 

the GARCH series of models. 

  

6.3 GARCH stands for ‘generalised autoregressive with conditional heteroscedasticity’.  

The GARCH(1,1) model for a time series (yt) is defined by: 
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where the εt are i.i.d. random variables of unit variance and μ, ω, α1 and β1 are parameters 

to be determined, with ω, α1 and β1 non-negative. 

 

6.4 We have fitted this model to both the iBoxx daily log return data for gilts, corporates 

and corporates in excess of gilts (Appendix A) and the absolute month-on-month changes 

in the Moody’s spread data for AAA and BBB.  The model parameters have been 

estimated by maximum likelihood.  The εt were assumed to be normally distributed.  The 

following are the resulting parameter estimates and estimates for the 99.5% VaR over one 

year, based on 2007 YE, 2008 YE and 2010 YE levels: 

 

 

Moody’s   AAA 
Spreads 

2007 YE 2008 YE 2010 YE 

α1 0.222 0.223 0.223 
β1 0.821 0.821 0.821 
ω 8.04 E-09 7.803 E-09 7.944 E-09 
VaR 178 230 234 

 

Moody’s   BBB 
Spreads 

2007 YE 2008 YE 2010 YE 

α1 0.214 0.240 0.232 
β1 0.819 0.809 0.81 
ω 9.475 E-09 8.261 E-09 9.391 E-09 
VaR (bps) 232 662 259 

 

 



17 

 

6.5 These VaR estimates with a GARCH model are naturally very sensitive to the recent 

variance. In a normal / benign regime (e.g. 2007), the VaR estimates appear to be on the 

low side, whereas the estimates in an extreme circumstance (e.g. 2008 YE) would appear 

to be quite large – looking at the 662bps 1 in 200 stress for BBB spreads. This is 

unintuitive if one believes there is significant mean reversion to equilibrium spread 

levels. These also have the effect of being pro-cyclical and may cause unintended 

consequences for insurers. Finally, the estimate for iBoxx corporates (Appendix 1) in 

excess of gilts is excessively high and casts doubt on the appropriateness of this model. 

 

6.6 It can be shown that the condition for a GARCH(1,1) model to be covariance 

stationary is that the sum of the parameters α1 and β1 should be less than 1.  If this 

condition is not satisfied, then the absolute values of the yt will in general increase 

without limit over time t.  It could be argued that this is intuitively unreasonable where 

the yt are log returns or credit spread changes. In fact, we can see from the table above 

that we have estimated 1 1 1  for the iBoxx corporates in excess of gilts and for both 

the Moody’s data sets, indicating that alternative models need to be considered to achieve 

covariance stationarity.  For iBoxx gilts and corporates, 1 1 is very close to 1, and so 

stationarity is only achieved over very long timescales. 

 

6.7 Another potential issue is the serial correlation still inherent in the autocorrelation of 

the residuals for GARCH models. This also indicates that more work may need to be 

done to fully specify the model. This would need to be done in a way that doesn’t 

inadvertently overfit the model by greatly increasing the number of parameters. 

 

6.8 The serial correlation, relative instability (across time) and the ‘unit root’ issue 

(i.e. 1 1 1) inherent in the GARCH model means that, after a fair amount of 

exploratory work, we did not consider GARCH to be a fruitful avenue in designing credit 

spread models. However, we have included useful pointers in the Appendix to comment 

on some of the approaches that we tried, and some potential further avenues to explore. 
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7. OTHER CONSIDERATIONS 
 

7.1 There are various ways in which stress tests could be expressed. For instance they 

could be: a) a fixed addition to spread in basis points; b) a fixed multiple of the spread; c) 

a fixed % loss in market value etc. The appropriate structure will depend on prior beliefs. 

For instance b) implies that (on the same bond) if a spread of 50bps should be stressed to 

100bps, then a spread of 100bps should be stressed to 200bps; some find this implausible. 

This has been investigated to some extent in the modelling by choosing the appropriate 

transformations (section 5.8), but a choice would still need to be made when 

communicating and disseminating the stresses. 

 

7.2 Stresses could vary by term. We have not explored this so far. The Moody’s US 

dataset is not split by term. It would be possible to split the iBoxx data by term buckets 

although obviously the number of issuers in each data cell would be diminished. Note 

that expressing credit stresses as a spread widening or as a reduction in market value both 

make implicit (and very different) assumptions about how stresses vary with term. 

 

7.3 Spreads can be measured relative to government bond yields or swap rates. In our 

analysis we have used government bond yields. Swap rates history does not go back far 

enough. For any long data series (such as the Moody’s US dataset) we are probably 

forced to analyse spreads relative to government bonds. 

 

7.4 Our analysis has looked at corporate bond data; other considerations will apply for 

more complex credit instruments such as callable bonds, CDOs, asset backed securities 

etc. 

 

7.5 Stresses could vary by sector (financials, industrials etc). However there are question 

marks regarding whether there is sufficient data to support this level of granularity 

without introducing spurious accuracy. 

 

 

7.6 In addition the analysis we have done so far does not necessarily pick up all aspects 

of credit risk, and as explained in (2.7) the analysis of spreads using the Moody’s US 

dataset does not pick up the impact of defaults and downgrades, except to the extent that 

bond spreads widen in anticipation of a downgrade/default event occurring. 

 

7.7 Many credit indices are re-balanced only periodically (e.g. once a month), which 

could introduce excess volatility in the index. Let us illustrate this with a simple example: 

 Suppose a bond index of AAA bonds is rebalanced on the first trading day of each 

month and that the yield on AAA bonds does not change over time. 

 

 Suppose then that a significant proportion of the index (e.g. one or two large 

constituent issuers) is downgraded to AA sometime during that month. 

 

 This will cause the average yield or spread on the index as the yield on the 

downgraded bonds increases and they are still included in the index 
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 On the first trading day of the following month, the index is rebalanced and these 

bonds are no longer included in the AAA index but are instead included in the AA 

index. 

 

 This will then cause the yield or spread on the index to fall to its original level 

before the bonds were downgraded. 

 

 In reality therefore, although spreads on AAA bonds have actually remained 

static, there has been upwards and downwards movement in the index. This has 

then caused us to overestimate the index volatility as positive and estimating a 

stress to AAA spreads whereas in fact volatility of AAA spreads is zero and so is 

the stress to AAA spreads. 

 

 The same effect would happen, in reverse, in the case of upgrades e.g. if AA 

bonds were upgraded to AAA, causing yields on the AA index to fall and then to 

increase back to their original level after the index was re-balanced. 

 

These simple examples illustrate how relatively infrequent re-balancing of an index can 

induce excess volatility. 

 

7.8 Excess volatility in an index may also be induced where the index is if the index 

consists of a small number of constituents (e.g. the iBoxx AAA index for UK corporate 

bonds has typically consisted of one or two constituents over the last two years) or when 

an index is disproportionately weighted towards a small of constituents (e.g. using market 

values as weights). 

 

7.9 For any business where the liability discount rate includes an allowance for a liquidity 

premium, any discussion of credit risk is incomplete without consideration of how the 

liquidity premium changes under the credit stresses applied. There is considerable 

research, controversy and debate on this topic elsewhere! 

 

 



20 

 

Appendix A – Further analysis on GARCH models 

 

A.1 Fitting the GARCH model to a shorter term dataset resulted in unintuitive results: 

This is partly to the paucity of the dataset, in that the model fitting is ‘blind’ to the 

context, and assumed that the extreme event seen in the short dataset is representative of 

the whole 
 

iBoxx Data Gilts Corporates Corporates 
XS Gilts 

μ 1.838 x 10-4 1.798 x 10-4 5.081 x 10-5 

α1 0.03073 0.02506 0.1843 
β1 0.9662 0.9714 0.8401 
ω 3.789 x 10-8 3.158 x 10-8 4.934 x 10-9 
VaR 25.97% 17.18% 114.03% 

 

A.2 We should note that the iBoxx data sets contain both a benign period, from 1998 to 

2007, and the much more volatile period of 2008 and early 2009.  In the Moody’s data 

sets, both the period of the Great Depression and the 2008-early 2009 period show much 

greater volatility than other periods.  One modelling approach that might be considered in 

response to this is what is known as a threshold GARCH model, under which the 

parameter α1 takes a different value according to whether yt-1 is above or below a 

threshold y0.  Typically we would expect α1 to be lower above than below y0, with the 

interpretation that adverse events tend to be followed by periods of high volatility.  The 

main drawback of this approach is that little research has been done into systematic 

procedures for estimating y0.  The most commonly used procedures are graphical, and 

this introduces an element of subjectivity to the estimation process.  We shall not pursue 

this approach further here. 

 

A.3 Another possible modelling approach is a Markov switching GARCH model, under 

which the parameters of the GARCH process at a given time depend upon the state of an 

unobservable Markov chain representing the ‘regime’ the market is in.  Dueker (1997) 

fits four different formulations of this model to US equity return data, using a two-state 

Markov chain.  It is found that for this data set, one of these formulations, the model 

‘GARCH-DF’, achieves a particularly significant improvement in fit over the basic 

GARCH(1,1) model. 

 

A.4 The paper by Dueker does not describe the iterative algorithm used to estimate the 

parameters.  To date the Working Party has been unable to estimate the parameters of any 

of the models in the paper for either the iBoxx or the Moody’s credit data.  It is not 

known whether this is because the algorithms the Working Party has attempted to use do 

not converge or whether they converge extremely slowly.  These difficulties in fitting 

must be regarded as a drawback of using such more complex models. 

 


