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Welcome

Disclaimers

1. The theory presented here has not been published or formally reviewed.

2. It is not necessarily a new invention.
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Prior knowledge

Required

A Brownian motion (aka Wiener process) is:

• a random process 𝑊𝑡  beginning at 𝑊0 = 0

• with continuous sample paths

• and independent, Gaussian increments.
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Optional

A distortion function is:

• a non-decreasing function

• mapping 0,1  onto [0,1].

It can be interpreted as a change of probability measure, 

re-weighting the likelihood of different scenarios.
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What are we trying to solve?

An insurer’s balance sheet includes liabilities for the expected cost of unknown future risk.

Suppose we have already modelled the potential ultimate cost of risk, calculated the expectation 

and reserved a best estimate liability for this risk.

Next we ask, how could this estimate of the risk develop over time?

• distribution of potential future estimates for the risk

• capital requirements over different time horizons

• future capital requirements conditional on future scenarios

• expected cost of capital required over lifetime of risk (risk margin).
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Table 1.  Acme Inc. balance sheet as at 31/12/2024

Assets Liabilities

Cash       £2400 Expected cost of 

claims £2000

Inventory   £1600 Equity          £2000

Total          £4000 Total            £4000



How should an emergence model behave?

Let 𝑋 represent the ultimate losses from a particular risk.

Let 𝑇 = 0,1  represent time.

Let 𝑋𝑡 = 𝔼𝑡 𝑋   represent the expectation of 𝑋 conditional on information known at time 𝑡.

Requirements for the random process 𝑋𝑡 :

• begin at mean: 𝑋0 = 𝔼 𝑋

• end at ultimate: 𝑋1 = 𝑋

• be a martingale: if s < t, then 𝔼 𝑋𝑡|𝑋𝑠 = 𝑋𝑠.
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Example risk: 𝑋~𝐺𝑎𝑚𝑚𝑎 2
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Standard approach
Straight-line emergence
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Emergence time“Real-life” time mapped to emergence time
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New approach
Gaussian emergence
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Gaussian emergence

The equation for Gaussian emergence is  𝑭 𝑿 = 𝚽 𝑾𝟏 , where:

• 𝐹  is the distribution function of the ultimate risk 𝑋

• Φ  is the distribution function of the standard Normal distribution

• 𝑊𝑡 is a standard Brownian motion, which we observe over time 𝑡 ∈ 0,1 .

This results in the following:

𝑋𝑡 = 𝔼 𝑋 𝑊𝑡 = 𝔼 𝐹−1 Φ 𝑊𝑡 + 𝒩 0,1 − 𝑡 𝑊𝑡 .
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Cumulative risk 

emerged at time 𝑡Convert from distribution of 𝑊1 

to distribution of 𝑋

A normal random variable 

containing the remaining risk 

to time 1

“given 𝑊𝑡” means 𝑊𝑡 

has been observed



Approximate calculation with nested simulations

𝑋𝑡 = 𝔼 𝑋 𝑊𝑡 = 𝔼 𝐹−1 Φ 𝑊𝑡 + 𝒩 0,1 − 𝑡 𝑊𝑡

We can easily approximate 𝑋𝑡 using nested simulations:

𝑋𝑡 ≈
1

𝑀
σ𝑖=1

𝑀 𝐹−1 Φ 𝑊𝑡 + 1 − 𝑡Φ−1 𝑢𝑖 , where 𝑢𝑖 are a sample of 𝒰 0,1 , such as 𝑢𝑖 =
𝑖−½

𝑀
 .

• In simulation models, 𝐹−1  can be calculated by looking up values on the distribution of 𝑋.

• 𝑀 does not need to be huge.

– 𝑀 = 100 seems enough for accuracy within about 1%.
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Visual
𝒕 = 𝟎. 𝟒 
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Simulate Brownian Motion

Project Brownian Motion to ultimate

Take the average

𝑊1|𝑊𝑡
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𝑋t = 𝔼 𝐹−1 Φ 𝑊1 𝑊𝑡



Visual
𝒕 = 𝟎. 𝟎 
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Visual
𝒕 = 𝟎. 𝟒 
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Visual
𝒕 = 𝟎. 𝟗𝟗𝟗 

23 April 2025

-3
-2

-1
0

1
2

3

Wt

t

0 0.999

Φ()

c(0, 1)

c
(m

W
, 

M
W

)

0 1

F
1
()

c(0, 1)

c
(m

X
, 

M
X

)

0 1

0
2

4
6

8

Xt

t

0 0.999



Visual
GIF

23 April 2025



Emergence patterns (deterministic)
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The rate of emergence is controlled by adjusting the time axis, mapping real-life time into 0,1 .



Key features

• Regardless of the distribution of 𝑋, the method guarantees that 𝑋𝑡 begins at the mean of 𝑋, 

ends at 𝑋, and is a martingale.

• It’s fairly efficient to approximate 𝑋𝑡.

• We can control the rate of emergence by controlling the rate that 𝑡 moves from 0 to 1.

Bonus feature: If 𝑋 is (Log)Normal, then 𝑋𝑡 is naturally a (Geometric) Brownian motion:

– if 𝑋~𝒩 𝜇, 𝜎  then 𝑋𝑡 = 𝜇 + 𝜎𝑊𝑡

– if ln 𝑋 ~𝒩(𝜇, 𝜎) then ln 𝑋𝑡 = 𝜇 + 𝜎𝑊𝑡 + ½ 1 − 𝑡 𝜎2.

Open question: Are there analytical solutions for other special cases?
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Limitation #1 – fixed rates of risk emergence

The Gaussian emergence model is overly simplistic if you assume that a known amount of risk 

from the Brownian motion emerges in each time period.

This does not reflect real life, where the information about risks may emerge at unknown rates.

Solution

The emergence rate can easily be made stochastic. Instead of mapping each future time to a 

fixed 𝑡 ∈ [0,1], you use something random.

Examples: Dirichlet allocation, Poisson process.

This does not create major difficulties in stochastic simulation of the reserve process.

However, it makes some of the maths more difficult.  In particular, Value-at-Risk calculations are 

more complicated because the amount of “emergence time” in a time period is uncertain.
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Limitation #2 – no concept of payment timing

In real-life reserve risk settings, there is usually a Paid amount which also emerges over time 

and acts as a lower bound for the ultimate risk.  This dynamic is not present in the model.

As a result, regardless of how much emergence time has elapsed and how high a level 𝑋𝑡 has 

reached, there always remains a possibility that it subsequently drops to the lowest possible 

value of 𝑋.

 Challenge

 It could be possible to develop a similar model based on 

Brownian motions for the simultaneous emergence of Paid and 

Incurred based, as envisaged in the graph to the left.
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Value-at-Risk and Solvency II Risk Margin

• Let 𝑉𝑡→ℎ 𝑝  be the Value-at-Risk of 𝑋𝑡 over horizon ℎ ≤ 1 − 𝑡 at probability level 𝑝, satisfying: 

ℙ 𝑋𝑡+ℎ ≤ 𝑉𝑡→ℎ 𝑝 |𝑊𝑡 = 𝑝.

• This is calculated just as easily as 𝑋𝑡:

𝑉𝑡→ℎ 𝑝 = 𝔼 𝐹−1 Φ 𝑊𝑡 + 𝒉 𝚽−𝟏 𝒑 + 1 − 𝑡 − 𝒉 Φ−1 𝑈 𝑊𝑡 , 𝑈~𝑈 0,1 .

• For fixed horizon ℎ and level 𝑝, 𝑉𝑡→ℎ 𝑝  is also a martingale.

• This tells us that 𝔼 𝑉𝑡→ℎ 𝑝 = 𝑉0→ℎ 𝑝 , enabling a calculation of the Solvency II Risk Margin as 

the expected discounted cost of capital:

Risk Margin ≔ 𝐶 

𝑖=0

𝑁−1

DiscountFactor𝑖 × 𝔼 𝑉𝑡𝑖→ 𝑡𝑖+1−𝑡𝑖
99.5% − 𝑋𝑡𝑖

≈ 𝐶 

𝑖=0

𝑁−1
DiscountFactor𝑖

𝑀


𝑘=1

𝑀

𝐹−1 Φ 𝑡𝑖+1 − 𝑡𝑖  Φ−1 99.5% + 1 − 𝑡𝑖+1 − 𝑡𝑖  Φ−1 𝑢𝑘 − 𝔼 𝑋 .

where 𝐶 is the assumed cost of capital and 𝑡𝑖  are future calendar years mapped to [0,1].

Note that Limitation #1 suggests that this calculation is imprudent!
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Emergence by distortion

When we observe 𝑊𝑡 we change our view of the likely ultimate 𝑊1.

This is the same as re-weighting the probabilities of 𝑊1 with a distortion function 𝐺𝑡 𝑢 :

• 𝐺𝑡 𝑢 ≔ Φ
Φ−1 𝑢 −𝑊𝑡

1−𝑡

• 𝐺𝑡
−1 𝑢 = Φ 𝑊𝑡 + 1 − 𝑡 Φ−1 𝑢 .

The distortion provides an updated view of the distribution of 𝑊1 and therefore of 𝑋.

𝑋𝑡 is simply the distorted expectation of 𝑋 using this distortion function:

• Expectation:   𝔼 𝑋 =  ∫ 𝑥𝑓 𝑥 𝑑𝑥 = ∫0

1
𝑥𝑑𝐹 𝑥  = ∫0

1
𝐹−1 𝑢 𝑑𝑢  ≈

1

𝑀
Σ𝑖=1

𝑀 𝐹−1 𝑢𝑖

• Distorted expectation: 𝔼𝑡 𝑋 =  ∫0

1
𝑥𝑑𝐺𝑡 𝐹 𝑥 = ∫0

1
𝐹−1 𝐺𝑡

−1 𝑢 𝑑𝑢 ≈
1

𝑀
Σ𝑖=1

𝑀 𝐹−1 𝐺𝑡
−1 𝑢𝑖 .
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Making 𝑿 more complicated

Suppose 𝑋 = 𝑓 𝑋1, 𝑋2, …  is a complicated function of a vector of multiple random variable components 𝑋𝑖 

with distribution functions 𝐹𝑖  , each with their own separate emergences 𝑊𝑖;𝑡 and associated distortions 

𝐺𝑖;𝑡  .

Then 𝔼 𝑋 𝑊1;𝑡1
, 𝑊2;𝑡2

, … = 𝔼 𝑓 𝐹1
−1 𝐺1;𝑡1

−1 𝑈1 , 𝐹2
−1 𝐺2;𝑡2

−1 𝑈2 , … 𝑊1;𝑡1
, 𝑊2;𝑡2

, … .

The complexity of the calculation increases in line with the number of variables and the function 𝑓, but for 

the approximate mean calculation, 𝑀 still only needs to be large enough for a decent sample average.

Example: 𝑋 = 𝑋𝐴 + 2𝑋𝐵.

If 𝑋𝐴 has emerged by 𝑡𝐴 ∈ 0,1  and 𝑋𝐵 by 𝑡𝐵 ∈ 0,1  then:

𝑋𝑡𝐴,𝑡𝐵
≈

1

𝑀


𝑖=1

𝑀

𝐹𝐴
−1 𝐺𝐴;𝑡𝐴

−1 𝑢𝐴,𝑖 + 2𝐹𝐵
−1 𝐺𝐵;𝑡𝐵

−1 𝑢𝐵,𝑖 .

If 𝑋𝑖  are correlated, the dependency develops naturally over the course of emergence.
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Recap

• Framing of the problem:

– We start off already having a model of the ultimate risk 𝑋.

– We want to find a suitable process 𝑋𝑡  representing the best estimate as risk emerges.

• Solution to use a Brownian motion 𝑊𝑡 𝑡∈ 0,1  as a proxy for the emergence of 𝑋.

• The key equation is 𝑭 𝑿 = 𝚽 𝑾𝟏 , which equates the rank of 𝑋 to the terminal rank of 𝑊𝑡 , which we will observe.

• Future reserve paths can be simulated with a fairly quick approximation, outlined below:

• We can control the rate of emergence by controlling how real-life time maps into 𝑇 = 0,1 .

• Limitations include:

– Deterministic emergence rates will generally understate the volatility.

• Stochastic emergence patterns solve this but make the maths more complex.

– There is no concept of payment timing in the model.
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Observe 𝑊𝑡
Project a sample 

of 𝑊1|𝑊𝑡

Calculate 
𝐹−1 Φ 𝑊1 𝑊𝑡

Average across 
the sample
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Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff 

are encouraged.

The views expressed in this presentation are those of the presenter.

Questions Comments
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