

Q&A
GI Spring Webinar Series: Is now the time for Capital Modelling in python?

1. Great insights. What would be the difference in the cost of using an existing

capital solution versus using Python?

Dan: Python and most packages you would use to build a bespoke model are free. You
would also likely be using free looks like VSCode and git for the model development. So
the software costs will be very low for a bespoke build. This needs to be offset against
the higher development and maintenance costs that come with owning a complex code
base with multiple external dependencies.

Personally, I think the right solution lies in the middle. I think it is beyond the appetite
and capacity for most capital teams to take on a completely bespoke build in Python, in
the way Felix's team has done, and I think the strain on the regulators to keep up with
many divergent modelling approaches will be a barrier. We won't see large scale
adoption of Python for capital until we have more established example models/library
solutions that people can adopt. It remains to be seen whether these will emerge out of
an open source movement or developed and sold as another proprietary solution. I
think the latter makes most sense, as there is clearly the market already for vendor
solutions in this space, and it is difficult for an open source project to get enough
traction and support to get all the boring but important stuff done like validation.
Whether open source or proprietary, it is likely that any Python based solution would
significantly undercut the cost of he existing vendor models, as so much advantage can
be made of the excellent Python ecosystem that already exists, so there is no
reinventing the wheel. Personally, I am working to develop a specialized package for
capital modelling in Python called CaPytal, and some library style models that use this
package. CaPytal aims to use the best of what is freely available in Python and the
scientific compute packages, and wrap it up in an easy to use syntax aimed specifically
for the capital modelling workflow. Please get in touch if you'd like to know more about
this project.

2. Really interesting. For Felix - can you model a risk area on Python while keeping
the rest of the model on a vendor solution? If yes, how do you plug these?

Felix: You certainly can. For instance cat models would typically always reside outside
of Python as almost the entire market uses the main vendors. Similarly, ESG data
typically comes from a third party source. But you could also even separate say reserve
risk and underwriting risk if you really wanted to, model them independently and then
aggregate them in Python. There are many ways of plugging. For cat models which are

typically not re-run very often, data can be stored on a database, flat file, pickle file or
similar and then sourced from there in Python. There are I believe also vendors that offer
some Python plug-ins potentially allowing you to control and run a vendor solution from
Python code.

3. Should we build an open source capital model in Python that is available to the
whole market?

Dan: It is a very interesting idea and it could well be that such a solution emerges. Open
source projects typically need a core team of very good individuals to gain traction and
maintain progress and quality. It isn't really happy with lots of people just nibbling away
around the edges. So it will come down to whether a group of such individuals emerges
with the passion to do this. The main beneficiaries would be insurance companies who
get to save on their capital modelling spend, so it could maybe work if there was a
coalition of carriers sponsoring the project and allowing their staff to spend time
working towards it. Personally, I think it is more likely that we will see new vendor
solutions emerge, that aren't completely free, but which undercut existing vendor
solutions by leveraging what Python and the scientific compute ecosystem already does
well.

4. How does Python compare in terms of runtime to other major software
platforms?

Dan: Code written directly in Python using Python loops and objects will be slow. But
Python packages like Polars and NumPy are written in other languages (Rust and C
respectively) and take advantage of excellent vectorisation and parallelisation that
makes them as fast as any existing platform for those calculations. The challenge will
be putting all the calculations together in a way that uses these packages sensibly,
doesn't create bottlenecks with native Python glue code, and manages memory usage
sensibly across the model. Like with other languages or vendor capital software, well
written models will run faster than poorly written models. The tools are available in
Python, and I believe it is entirely possible to build Python based solutions that are as
performant as any established capital software on the market, plus with a lot of other
benefits such as transparency, ease of adoption, ease of maintenance, ease of
debugging, better integrability with other systems, easier cloud deployment, simpler
syntax, better LLM and genAI integration, lower cost.

5. how do you mange dependencies?

Martin: On dependency management, in both cases I’ve been involved in, rigid control
of the work environment (managed in both cases by actually setting up the
development environment as special purchase machines on the cloud). If you run

separate development and production environments (and you really should) you can
build a Python solution into an exe including all the packages (and specific versions of
packages) that are needed to run it. Change management processes to update
packages, run automated tests, and smoke test to make sure that it still works. The
same process as upgrading the version of one of the vesting vendor solutions really.

Felix: Agree, rigid control of work environment. We have taken the decision of upgrading
once per year to the latest stable versions of all libraries we use. A requirement file
specifies all versions and this file is part of the git repository and the dockerfile reads it
in when the container is created. And of course run in dev first before production and
test it all through before release.

6. How do you deal with regular updates / builds required in the capital model? Is it
easy to do in Python or do you have a UI which supports this and makes this
easier?

Dan: If you are managing any complex code base that is developing over time, I would
strongly recommend adopting a git based workflow or something similar. This allows
you to version control every step of your development, create branches for substantial
development and merge in as part of controlled peer review, tag and maintain versions
of the code used for key milestone runs, revert back when needed. The integration of git
with VSCode is probably the smoothest and most intuitive user interface for git that I
have worked with, and Python, being all simple text files integrates really nicely with a
git workflow, as all changes can be inspected and reverted on a line by line basis.

7. What platform do you best recommend to run python models? Eg. Local / Azure /
AWS etc

Felix: With Azure you get dev ops which is nice. For development being able to run
locally, perhaps with a smaller scope or a lower number of simulated years certainly
helps. I don't have any experience with AWS, but this is certainly viable too.

Dan: All are viable options. Personally I prefer a workflow on my own machine. As soon
as I have to remote into virtual desktops elsewhere my user experience tends to
degrade a bit. So for intensive iterative workflows I'd like to keep everything as native to
my laptop/desktop as possible. So I am a big fan of having the ability to access data and
run models locally, for development purposes, even if for the larger production model
runs I need to remote in somewhere or send off an api call to run the model. Ideally that
would be available from the same workflow tools I use for my local development work,
so I can trigger large production runs remotely or local development runs for inspection
and debugging from the same interface with single click convenience. This type of
workflow is certainly achievable with Python.

8. If someone wants to learn Python, where can they turn to as a start?

Dan: To learn Python you first need a basic grasp on the syntax, importing modules,
functions, classes etc. There are good online resources like codecademy for this.

Early on I would complement this syntax learning with a good book like Fluent Python by
Luciano Ramalho.

You also need to know how to setup virtual environments and manage dependencies
using looks like poetry. I would get into good habits with this early, but it does add to the
initial learning curve. Similarly it is good to learn version control through git, though not
essential initially until you are working on a substantial project.

You will most likely be using established packages heavily such as NumPy,
pandas/polars, SciPy for modelling, or tools like dash/niceGUI/plotly for reporting.
These have good documentation and there are also books and tutorials on each of
these. There is too much there to try and read up on in advance, so you'll need to learn
these as you come across them on specific projects.

I would recommend also getting familiar with wring code through notebooks like Jupyter
Notebooks or Marimo. These are great for exploratory analysis in Python or building
dynamic reports.

The most valuable way to learn is by trying to code something yourself. Starting with
some scripts to clean data or automate parts of your workflow is a great start. If you are
interested in really accelerating your learning you could collaborate on a large project,
such as an open source project, or become a contributor to the CaPytal python project.

You can also check out Tom Durkins presentation through the same IFoA spring series
which talks about how actuaries can get into coding and develop their coding mindset.

Please connect with me on Linked In if you are interested in learning more about Python
for capital, as I also post material and references on their that are relevant.

9. How easy is it to expand a python capital model solution to parallel/distributed
processing if necessary?

Dan: Some Python packages already offer very good vectorisation and parallelisation of
compute, and you would likely be using these for most of your calculations anyway.
NumPy is vectorised and very fast but works naturally on a single machine and generally
single core. You can achieve further parallelisation across cores using Python native
packages like joblib. Polars is naturally multi-core but still single machine. If you mean
going further, and distributing a single model calculation across multiple machines,
then this would probably need to be considered early on in the design of your model. I'm

not aware of perfect drop-ins that will automatically distribute the compute across
agents, but some packages are emerging that are specifically for this type of out-of-
memory computation, such as Dask and Ray. The implementation approach and
benefit will also be affected by your actuarial model design. Are there places in the
middle of the model where stats need to be calculated, or simulations reshuffled, that
require a re-aggregation of all of the sims, and if so, do these bottlenecks offset the
advantages? You would also need to think about how random seeds are managed
across agents if each is doing its own simulation. There are costs to adopting these
distributed libraries if they aren't needed, they are typically harder to debug, they can be
slower for smaller problems that do fit on a single machine, they have a steeper learning
curve and require more infrastructure complexity. So I would say multi-agent
parallelism needs to be designed in early and probably only where the problem is known
to require it.

10. how available are pre-built packages for capital modelling calculations that are
designed optimally for our uses? of course we'd want in-house code dev, but
don't want everyone "reinventing the wheel" for core functionality

Felix: I don't think there are very dedicated capital modelling packages, but there are
plenty of mathematical / statistical packages that are very useful, such as NumPy, SciPy
etc. There is rarely a need to program mathematical logic.

Dan: There are many great Python packages that do bits of what we need very well,
SciPy for simulation, NumPy for compute, Pandas/Polars for filtering and joining. I don't
believe any of these are a perfect one-stop-shop for all of it. I think there is space for a
custom package to emerge that wraps the best of these open source packages into a
single optimised package targeted for the actuarial/capital modelling workflow. This
would simplify the dependency management that can be a challenge when using
multiple third party packages together, as there would only be one package needed for
the whole model. It would provide a super clean and intuitive syntax familiar to users of
the established modelling tools. It would abstract away the need to manage your own
data structures and formats (arrays vs dataframes, rows vs columns etc), and it could
provide additional functionality beyond those provided by the existing packages, such
as management of dependency groups for simulation reordering copula approaches. It
could also go further and provide additional config layers (for controlling things like sim
count and seed across a whole model), integrate with supporting data and run version
management frameworks, integrate logging and profiling packages to support model
inspection and development, and include UI components for managing runs and
inspecting results. But it definitely wouldn't try to reinvent the wheel, and would use the
best of the open source packages available to accelerate its development and keep its

production and maintenance cost to a minimum. If anyone in interested in bringing
such a package about please let me know.

11. How can you incorporate ESG - economic scenario generator in python capital
model?

Dan: Python is brilliant for ingesting data from various formats and apis. Pandas and
Polars for example, can easily import from csv, database, parquet format using in-built
methods. For large external datasets like Cat or ESG data, it is likely that these will be
imported from a file into a dataframe like format and then processed for use in the
model. This is really no different to what I have seen with the existing vendor model
solutions where the Cat and ESG tends to get imported from a file, typically a series of
CSVs.

12. "Feedback point: I appreciate it was a discussion rather than a presentation, but
it might have been fun to see a simple example of what Python code for a
simulation model might look like."

Dan: I'm hoping to release some materials soon illustrating what an implementation of
some common capital modelling logic steps would look like in NumPy, Polars and
CaPytal. Please follow me on Linked In or get in touch if you would be interested in that
sort of thing.

