

Machine Learning Modelling on Triangles

April Lu, John McCarthy

Agenda

This presentation builds on previous work presented at the 2021 IFoA Spring Conference* and is aimed at those relatively new to machine learning

- Reminder of machine learning framework for modelling triangle data
- Data
- Results
- Diagnostic charts
- Next steps
- Q&A

Machine Learning in Reserving Working Party

- Who are we?
 - International group of actuaries, data scientists and academics from diverse backgrounds, chaired by Sarah MacDonnell
- What are our aims?
 - Learn how machine learning (ML) can be used in non-life reserving
 - Carry out research on the use of ML in reserving
- Our workstreams
 - Foundations
 - Literature Review
 - Survey
 - Data
 - Research

Find us at https://institute-and-faculty-of-actuaries.github.io/mlr-blog/

Framework

Incremental loss triangle

Accident period

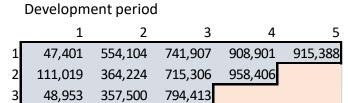
57,679

68,434

418,971

Available data

To be predicted



Incremental loss data table

Training data

Test data

Accident period	Development period	Incremental loss
		47,401
1		554,104
1		741,907
1	. 4	908,901
1	. 5	915,388
2	. 1	111,019
2	. 2	364,224
2	3	715,306
2	. 4	958,406
2	. 5	
3	1	48,953
3		357,500
3		794,413
3	4	
3	5	
4	. 1	57,679
4	. 2	418,971
4	. 3	
4	. 4	
4		
5		68,434
5		
5		
5		
5	5	

Framework

X = "Features" or "Predictors"
or "Inputs" or "Independent
variables"

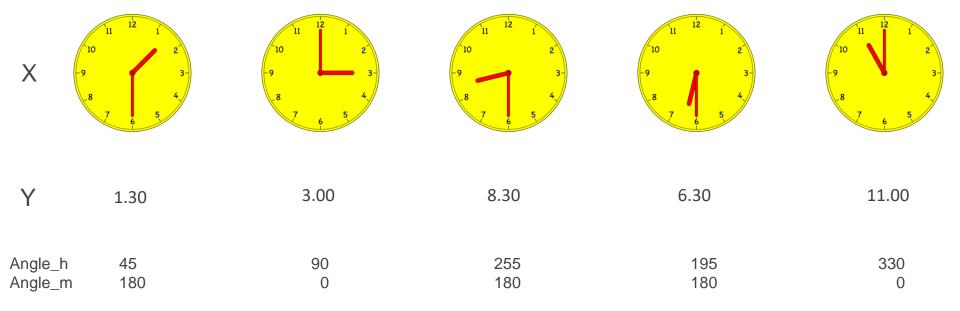
Y	\approx	f	(X)

Accident period	Development period	ncremental loss
1	1	47,401
1	2	554,104
1	. 3	741,907
1	4	908,901
1	L 5	915,388
2	2 1	111,019
2	2	364,224
2	2 3	715,306
2	2 4	958,406
2	2 5	
3	3 1	48,953

$$(Y - f(X))^2$$

Y = "Target" or "Output" or "Response" or "Dependent variable"

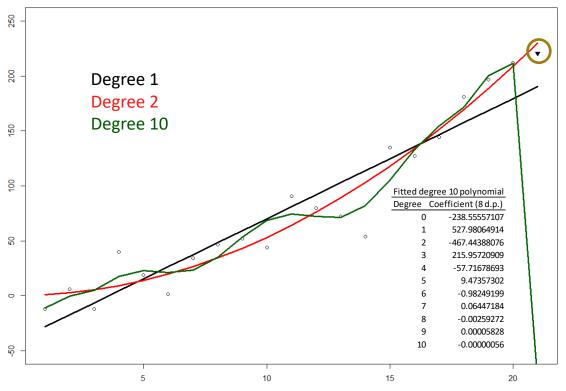
Features



^{*}Based on an example from the book "Deep Learning with R" by Francois Chollet with J.J. Allaire

Hyperparameters and tuning

Polynomials of degree 1, 2 and 10 fitted to 20 x-y pairs of a quadratic (plus noise) and used to predict value at x = 21



- Example quadratic plus random noise
- Fit a polynomial using first 20 points (training data)
- Predict the value at x = 21 (test data)
- Degree of polynomial is a hyperparameter

Cross validation

Acc	Dev	Incremental loss	Cross validation fold
1	1	47,401	2
1	2	554,104	2
1	3	741,907	1
1	4	908,901	3
1	5	915,388	2
2	1	111,019	1
2	2	364,224	1
2	3	715,306	3
2	4	958,406	3
2	5		N/A
3	1	48,953	3
3	2	357,500	3
3	3	794,413	2
3	4		N/A
3	5		N/A
4	1	57,679	1
4	2	418,971	2
4	3		N/A
4	4		N/A
4	5		N/A
5	1	68,434	1
5	2		N/A
5	3		N/A
5	4		N/A
5	5		N/A

Withhold some training data from fitting process

 Use this data to estimate performance out-ofsample for candidate hyperparameter

 Random 3-fold cross validation: fit model to data using folds 1 and 2 and predict target in fold 3.
 Compare prediction to (known) actual in fold 3 to estimate out-of-sample performance.

LASSO

Select λ — Fit model (fits a β_i for each feature x_i)

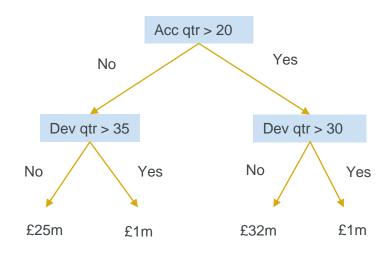
$$e^{\beta_0+\beta_1x_1+\cdots\beta_px_p}$$

Minimise the expression below:

$$-\sum_{m=1}^n l\left(y_m;\hat{\beta}\right) + \sum_{r=1}^p \left|\hat{\beta}_r\right|$$



XGBoost



- Individual decision tree model typically performs poorly
- XGBoost outputs a collection of decision trees combined prediction much better
- Several hyperparameters control how the collection of decision trees is constructed – number of trees to use, rate of adjustment from one tree to the next, tree depth and many more
- Outstanding track record in data science prediction competitions
- Not easy to grasp the details behind fitting procedure

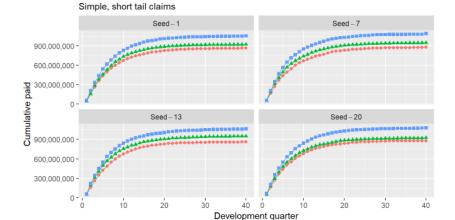
The SynthETIC R package* implements a simulation machine for claims data using the methodology described by <u>Avanzi et al, 2020.</u>

Four interesting environments are already in the public domain**

We simulated twenty triangles for each environment

Environment 1

Cumulative paid development plot for selected accident periods and random seeds

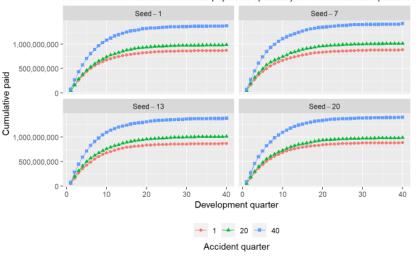


Accident quarter

Environment 2

Cumulative paid development plot for selected accident periods and random seeds

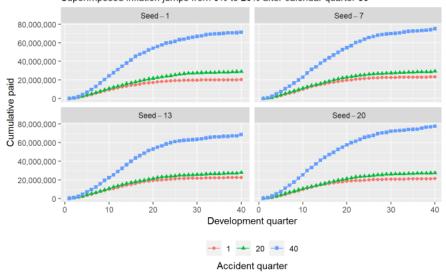
As environment 1 but all incremental payments uplifted by 30% from calendar quarter 30



Environment 3

Cumulative paid development plot for selected accident periods and random seeds

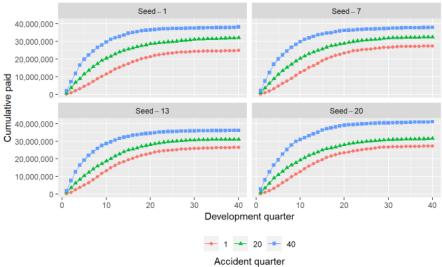
Superimposed inflation jumps from 0% to 20% after calendar quarter 30



Environment 4

Cumulative paid development plot for selected accident periods and random seeds

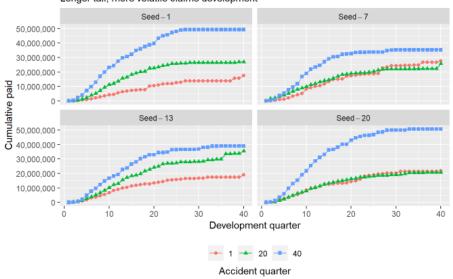
Gradual increase in claims processing speed



Environment 5

Cumulative paid development plot for selected accident periods and random seeds

Longer tail, more volatile claims development



Summary of modelling approach

20 simulations of 40 x 40 triangle of accident x development quarter.

Training data is calendar quarter <= 40, test data is calendar quarter>40

Chain ladder (volume all), LASSO and XGBoost fit using accident and development quarter factors as features ("_Basic" models)

5-fold random cross validation

LASSO lambda tuned per blog post* and XGBoost n_rounds tuned

Additional features engineered based on LASSO blog post* to capture interactions and calendar/accident/development period trends. LASSO and XGBoost fitted to this data (" Extra" models)

Caveat

- The examples here are intended to be instructional rather than conclusive
- We make no claims about the superiority/inferiority of any individual machine learning method for reserving in general.
- Real world data will introduce more problems
- Better performance in our examples may be possible with more time to tune the hyperparameters/different cross validation approach/different loss function
- Full code will be released on the blog site (soon)

Results

Average reserve error [(predicted future paid / actual future paid) – 1] across all 20 random seeds

Environment	Description	Chain ladder	LASSO_Basic	LASSO_Extra	XGBoost_Basic	XGBoost_Extra
1	Simple, short tail	1%	13%	0%	2%	-3%
2	30% uplift to incremental paid from cal qtr 30 onwards	9%	21%	1%	6%	0%
3	Superimposed inflation jumps to 20% after cal qtr 30	-33%	-39%	-3%	-54%	-25%
4	Gradual increase in claims processing speed	95%	111%	2%	65%	9%
5	Longer tail, more volatile claims development	53%	3%	23%	-21%	-25%

Results

Shiny app walkthrough

Conclusion

- In simulated data, ML methods were able to reproduce CL results on simple development data and pick up on calendar / accident period trends that cause CL problems
- R Shiny is a useful environment for analysing diagnostic plots that support results interpretation
- Lots more work to do!

Further work on triangles

- Rolling origin cross validation
- Loss function claims development result
- Real-world data
- Further model interpretation and diagnostics

Questions

Comments

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].

