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Abstract 

The fast-moving field of data science is increasingly permeating into the health and care actuarial 
sciences. Given this context, the Institute and Faculty of Actuaries set out to form a “techniques in data 
science in health and care” working party. This working party was tasked with creating a framework for 
those actuaries working within the health and care domain that would assist them determining which 
techniques are appropriate for a project. The framework presented here was developed through a 
combination of literature review and synthesis of expert opinion from experienced practitioners from 
diverse backgrounds. 

The framework offers a structured, itemised approach, serving as a checklist to ensure that all relevant 
analytics and decisions are considered and documented. Each itemised topic is covered by a summary 
providing guidance and relevant references for further reading. The checklist follows the natural 
workflow of a data analytics project, guiding users through each step to prevent omissions and maintain 
rigor in both analysis, reporting and peer-review. The framework blends relevant analytics elements 
from actuarial science, data science and epidemiology.  

We hope the framework will enhance transparency, reproducibility, and comprehensiveness in the 
reporting and peer-review of health and care data analytics projects.  
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1. Introduction 

Given the recent advances in data science, aided by a rapid expansion in computing power, the health 

and care (H&C) actuarial field is experiencing a transformation. Actuaries are well positioned to 

leverage the increasing variety and volume of internal and external data to aid decision-making and 

strategic planning. Since 2018, the Institute and Faculty of Actuaries (IFoA) has increased its focus on 

data science, including formation of various working parties and the inclusion of data science in 

qualifications (Marshall, 2024). For the purpose of this paper, we defined data science as an umbrella 

term for any field of research that involves the processing of large amounts of data in order to provide 

insights into real-world problems (The Alan Turing Institute, 2025). Although not a new area of work for 

actuaries, the wider fields of data science showcase many new techniques. 

This document presents a structured framework to guide H&C actuaries in selecting data science 

techniques appropriate for a project and aids in systematic, well documented decision making and 

reporting. Throughout a data analysis project, both explicit and implicit analytics decisions are made, 

such as defining the scope of the project and underlying data, selecting features, and choosing model 

class and parameters. The checklist provided in this framework (see table 1) offers a comprehensive 

overview of these decisions, ensuring that no aspect is overlooked or omitted in the analytical and 

reporting process. 

We have aimed to make this framework accessible to a broad audience. However, we recognise that 

some sections such as those on encoding categorical features and on gradient boosting machines 

may be challenging to those new to the field. To this end, we have included references for further 

reading as well as specific examples to illustrate various scenarios a health and care actuary might 

encounter. The examples weigh the strengths and weaknesses of different methodological 

approaches and provide guidance on their appropriateness under varying circumstances.  

2. Developing the framework 

The IFoA working party “Techniques in Data Science in Health and Care” contains a mixture of 

actuaries, data scientists, epidemiologists and healthcare professionals. This group was tasked to 

develop an index of the data science (or closely related) aspects of H&C actuarial data analytics 

projects which utilise tabular data. The scope was restricted to tabular data since traditional actuarial 

analysis, such as experience analysis is based on tabular data. This index was then grouped into four 

categories:  

a) Study design and technology requirements.  

b) Pre-model 

c) Model 

d) Post-model 

From this grouped index, a checklist was developed and reviewed within the working party (see table 

1). Each item included in the checklist contains a summary (section 3) and, where relevant, key 

references for further reading. Generative AI including large language models are considered out of 

scope. Although generative AI can play a role in analysis of tabular data, for example by suggesting 

code, brainstorming and even imputation of missing data, their use in traditional actuarial analysis is 

currently limited.  

Various documents including the Technical Actuarial Standard 100 (Financial Reporting Council, 

2023) and the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE 

statement) were also consulted improve the framework’s comprehensiveness (von Elm et al., 2007). 



Table 1: Framework checklist 

Section and topic Item # Checklist item Section 

Study design    

Research 

question 

S1 Detail research question 3.1 

Analytical project 

categorisation 

S2 Consider project categorisation (cohort study, case-control study, cross-sectional study) 3.2 

Software and 

technology 

   

Reproducibility ST1a Reproducible data  3.3.1 

 ST1b Reproducible methods including version control using Git 3.3.2 

Data    

Data selection D1a Formulate data inclusion criteria (commencement and calendar year, age, medical history, …) 3.4 

 D1b Ethical and privacy controls 3.4.3 

Data cleaning D2a Structural issues (duplications, incorrect variable types) 3.5.1 

 D2b Data quality checks (outliers, missing data) 3.5.2 



 D2c Consistency checks (temporal checks, logic checks, statistical checks) 3.5.3 

Data sufficiency 

and reliability 

D3 Credibility and sample size calculation.  3.6 

Pre-modelling    

Data partitioning Pr1 [If applicable] Determine test-train splits, holdout and folds 3.7 

Candidate 

features 

Pr2 Detail which features were considered for the model 3.8 

Feature 

engineering 

Pr3a Detail how continuous features were modelled (polynomials, bucketed, GAM, Gompertz-

Makeham, Categorical) 

3.9.1 

Pr3b Detail how high categorical features were modelled (bucketed, encoded, grouped, PCA) 3.9.2 

Pr3c Detail whether, and if so, how, variable interactions were considered 3.9.3 

Model    

Model design  M1a Specify model (e.g. GLM, random forest, Gradient Boosting etc).  3.10.1 

M1b Detail target variable, weights and offsets (A/E, claims incidence, mortality incidence) 3.10.2 

M1c Probability distribution of target variable (Poisson, Gamma etc).  

This could include testing the assumptions (e.g. for Poisson variance equal to the mean) 

3.10.3 



Feature selection M2 Detail feature selection strategy (domain knowledge, stepwise AIC, LASSO, …) 3.11 

Imbalanced data M3 [If applicable] detail how imbalanced data was dealt with 3.12 

Hyperparameter 

tuning 

M4 [If applicable] detail how hyperparameters were tuned 3.13 

Post Model    

Post-model 

diagnostics 

Pm1 Visualise residuals and lift to assess model fit. Monitor model drift.  3.14 

Model 

explainability 

Pm2 Explore and visualise key features and their relationships with the outcome.  3.15 

Model 

interpretation 

Pm3 Bradford-Hill criteria 3.16 



 

3. The framework 

3.1 Research question 

High quality research is underpinned by a good research question. Therefore, it is important to invest 

time in defining the research question to be answered. It can be difficult and time-consuming to revisit 

the question after analytics have been performed, therefore consultation and agreement with key 

stakeholders at the start is vital. The purpose and scope of the investigation should be well-defined 

and documented. 

The acronym “FINER” can support defining a good research question (Hulley et al., 2007): feasible, 

interesting, novel, ethical, relevant (see table 2).  

Table 2: An adapted version of the FINER criteria for a good research question and project plan 

(Hulley et al., 2007).  

Criterion Summary 

Feasible Adequate number of subjects (see D2, table 1) 

Adequate technical expertise 

Affordable in time and funds 

Manageable in scope 

Fundable 

Interesting Getting the answer intrigues the investigator and their colleagues 

Novel Provides new findings 

Confirms, refutes, or extends previous findings 

May lead to innovations in concepts of health and disease, medical or actuarial practice, or 

methodologies for research 

Ethical A project that the institutional review board will approve 

A project that adheres to data protection regulation 

Relevant Likely to have significant impacts on scientific knowledge, clinical or actuarial practice, 

health policy or insurance business performance 

May influence directions of future research 

 

3.2 Analytical project categorisation 

Analytic projects undertaken by actuaries are typically observational in nature, relying on pre-existing 

data rather than introducing treatments or interventions (e.g. clinical trials). In clinical literature, 

analytical projects are referred to as “studies” and there are three main classes of observational study 

designs available for H&C data (Mann, 2003). Each study design offers specific strengths and 

weaknesses which are extensively covered in epidemiological literature. Here we look at the three 

types of observational data study types in more detail. 

  



3.2.1 Cohort Studies 

H&C actuaries are likely familiar with cohort studies, where a cohort of people or policies are followed 

over time, as this is the default study design of experience analysis of an insurance portfolio. Cohort 

studies are useful for studying incident cases and establishing causal relationships. For most actuarial 

cohort studies, exposure data is collected prospective to an outcome of interest, which reduces 

potential recall bias. Recall bias typically occurs when exposure is collected retrospective to the 

outcome. For example, an individual may be more or less likely to recall the risk factors they were 

exposed to after they experience an outcome of interest. When the outcome of interest is rare, these 

studies require progressively larger cohorts and longer follow-ups in order to ensure sufficient 

statistical power (3.6 Data Sufficiency and Reliability). An example of a cohort study is following a 

cohort of people over time to compare lung cancer incidence rates between smokers and non-

smokers. 

3.2.2 Case Control Studies 

Case-control studies are more efficient study designs for rare outcomes or where follow-up time is 

limited. Case-control studies compare individuals with a particular outcome (cases) to those without it 

(controls) to analyse potential risk factors. Unlike cohort studies, there is no follow-up or exposure 

time. Case-control studies are efficient but suffer from various potential biases (e.g. recall bias) 

especially when data is retrieved retrospective to the outcome. An example of a case-control study is 

a study comparing fraudulent claims (cases) to genuine claims (controls) to identify predictors of 

fraudulent claims.  

3.2.3 Cross-sectional Studies 

Cross-sectional studies are observational studies that analyse data on exposure and outcome from a 

population at a single point in time. Cross-sectional studies can analyse the prevalence, but not the 

incidence of a condition due to the lack of a temporal element. For this reason, cross-sectional studies 

are useful for demographic distributions and outcomes where the individual remains within the dataset 

to be observed (such as low mortality diseases like diabetes). Cross-section studies are not useful for 

high mortality conditions such as stroke since at any given time, the number of prevalent cases will be 

low. An example of a cross-sectional study is an analysis of life insurance policy ownership by 

socioeconomic status. 

[Note. Interventional study designs (clinical trials) and descriptive study designs (case reports, case 

series and ecological studies) are out of scope of this framework as these study designs are generally 

not useful for actuarial projects.] 

3.3 Reproducibility 

Reproducibility of findings is the cornerstone of scientific research. This issue is particularly relevant 

for H&C actuaries who rely on predictive modelling and statistical analyses to inform decision-making. 

Reproducibility in the narrow sense (i.e. on the same dataset using the same methods) ensures that 

findings are consistent and trustworthy and enables peer-review. Epidemiological research, which 

includes most analytical work by H&C actuaries, is considered reproducible when requirements 

around data, methods and documentation have been met (Peng et al., 2006). 

3.3.1 Reproducible data 

Ensuring reproducible data involves maintaining consistent data sources, documenting pre-

processing steps, and storing both raw and processed datasets in repositories accessible to internal 

reviewers. Techniques such as data versioning, hashing for integrity checks, and structured metadata 

(e.g., using Findable, Accessible, Interoperable and Reusable (FAIR) principles (Wilkinson et al., 

2016) help ensure that analyses can be replicated by colleagues under identical conditions.  

  



3.3.2 Reproducible methods 

Version control tools such as Git enable actuaries to maintain an audit trail of the code base, revert to 

earlier analysis stages, systematically review model changes over time and facilitate collaborative 

workflows. Git can also support data lineage tracking by indexing data pre-processing.  

Randomness in data science methods (e.g. tree-based models, neural networks, clustering 

algorithms, bootstrapping and cross-validation) can be controlled by setting a random seed. Despite 

this, fixing a seed does not guarantee full reproducibility due to variations in hardware and software 

dependencies, underscoring the importance of containerisation tools like Docker or virtual 

environments for computational consistency. For these reasons, it is also best practise to document 

software environment and package versions used.  

Model and workflow ownership, as per TAS 100 (Financial Reporting Council, 2023), also supports 

reproducibility by having a clear point of contact available for queries.  

3.3.3 Reproducible documentation 

Well-structured workflows and comprehensive documentation support reproducibility. This includes 

using programming tools such as R Markdown and Jupyter Notebook that integrate code, output and 

explanatory text, including documentation around key decisions made during data pre-processing and 

analytics, into a single shareable document.  

3.4 Data selection 

3.4.1 Data selection criteria 

Well-designed studies include data selection criteria that define which subjects should be included 

and excluded. Data selection criteria should be defined to ensure appropriateness of the data. 

Particular important criteria involve geographical region, date of birth, commencement year (of 

insurance policy), calendar years of follow-up and medical history. Failure to specify data selection 

criteria can result in non-representative, or irrelevant study participants. For example, when using 

external datasets such as a dataset from the Continuous Mortality Investigation (CMI), actuaries 

should take care to understand the underlying selection rules used by the original data collectors such 

as the exclusion of rated lives in analyses of standard-term assurances. 

Data selection criteria vary by study design as cohort studies and cross-sectional studies enrol 

subjects based on an exposure (such as a hospital visit or being a policy-holder), while case-control 

studies enrol subjects based on an outcome (such as a fraudulent claim).  

3.4.2 Data bias 

Data bias may arise from inherently biased data sampling methods, historical bias within the data 

(including bias due to over-representation of certain groups) and/or omission of key predictive 

attributes from the data (Financial Reporting Council, 2024).  

Data bias can arise from various factors, examples are: 

1. Anti-selection, where individuals with poorer health or pre-existing conditions are more likely 

to buy or retain coverage. 

2. Data drift, where the statistical distributions of input features change over time. For example, 

the BMI distribution changing over time and the proportion of smokers decreasing over time.  

3. Concept drift, where the relationship between an input feature and the outcome changes by 

issue year. For example, inflation affects the relationship between sum assured and 

outcomes over time and improvements in underwriting could affect the impact of duration on 

outcomes.  



4. Reporting bias where not all data is captured consistently or accurately. For example, 

underreporting of smoking in the dataset.  

5. Outcome definition bias, where outcome definitions (e.g. ICD-11 codes), or even conditions 

covered can change over time. 

6. Omission of key predictive features, where key predictive features are missing from the 

data. For example, if smoking is not captured in a life insurance claim analysis, part of the 

effect of smoking could be assigned to features correlated with smoking such as males and 

low sums assured.  

Mitigating data bias often requires bespoke solutions and can be adjusted for within a model or 

dataset. For example, sum assured can be inflation-adjusted in historic data, various strategies 

including up sampling and weights can be considered (3.12 Imbalanced data) to deal with data drift 

and data selection criteria can also be utilised to deal with data bias, for example by excluding 

unreliable or non-representative data. Section 3.5 discusses some techniques in identifying unreliable 

or non-representative data.  

3.4.3 Ethical and privacy controls 

Actuaries should ensure that all datasets comply with relevant data protection regulation including UK 

GDPR (Regulation (EU) 2016/679, 2016) and the Data Protection Act 2018. Data collection and use 

should also comply with ethical approval and participant consent, where appropriate. Additionally, 

data analytics projects will be subject to internal governance processes, including legal, regulatory 

and audit requirements, as well as internal risk management guidance and professional guidance 

such as TAS 100 (Financial Reporting Council, 2023). The regulatory landscape is subject to constant 

change. For example, whilst direct use of protected characteristics is widely prohibited, indirect 

discrimination by proxy variables or complex algorithms is currently a regulatory grey area (Xin & 

Huang, 2024). Therefore, actuaries are encouraged to keep up to date with regulatory developments.  

Advanced algorithms and big data may elevate privacy risks and inadvertent use of protected 

characteristics by proxy. Structured ethical checkpoints throughout the analytics project (problem 

definition, data, modelling, evaluation and deployment), as discussed in recent actuarial literature 

(Huang, 2025) may help guard against these risks. These checkpoints help embed principles such as 

accountability, transparency and privacy. Transparency in particular is further aided by model 

explainability (Section 3.15). Bias and fairness are further covered in Section 3.14.6.  

3.5 Data cleaning 

Effective checks and controls should be applied to the data and any material bias should be identified  

(Financial Reporting Council, 2023). Checks and balances include: 

- data quality checks to identify any structural (3.5.1) or content issues (3.5.2); and 

- consistency checks, including statistical checks (3.5.3).  

All checks and controls that have been applied to the data should be documented (Financial 

Reporting Council, 2023). 

3.5.1 Structural issues 

Structural issues including duplicated rows, columns and lives, incorrect variable types and redundant 

columns that can introduce inefficiencies and distort analytical outcomes. Duplicated rows may arise 

from data entry errors or merging datasets, leading to overrepresentation of certain observations. 

Duplicated lives can arise from a claim by the same person on multiple policies, or tranches of the 

same policy. Similarly, redundant columns, often created during data processing, can add 

unnecessary complexity without providing additional information.  



Incorrect variable types, such as numerical values or dates stored as text, can interfere with 

calculations and statistical modelling as well as visualisations. Addressing these structural issues 

early prevents downstream errors and improves data integrity. Automated scripts and validation 

checks can help identify and correct such problems efficiently.  

3.5.2 Content issues 

Content issues in data cleaning include missing data and outliers as well as inconsistent and 

implausible data. Outliers can be identified by visualising histograms or performing range checks, but 

their interpretation depends on context. For instance, in lab tests and biometrics, outliers can be due 

to different units (e.g. mmol/L vs. mg/dL for cholesterol levels), or system conversions (imperial vs. 

metric). In financial datasets, negative values can indicate refunds rather than errors. Addressing 

outliers or missing data ideally involves identifying their root cause (e.g. by speaking with the data 

supplier) before determining whether correction, transformation, flooring/capping or exclusion is 

appropriate. 

Missing data can be missing completely at random (MCAR), missing at random (MAR) and missing 

not at random (MNAR) (Mack et al., 2018).  

1. MCAR occurs when missingness is unrelated to any observed or unobserved variables. An 

example of this is a batch of policy holders missing smoking information due to a data entry 

error. Although statistical power is reduced, there is no introduction of bias into the analysis.  

2. MAR occurs when missingness is systematically related to observed, but not unobserved 

data. For example, younger (observed) policyholders being less likely to disclose smoking 

habits. MAR can introduce bias if not properly adjusted for but can often be corrected for. 

3. MNAR occurs when missingness is related to unobserved factors. For example, high-risk 

(unobserved) individuals omitting disclosure of health conditions. MNAR is most problematic 

since it cannot be corrected for since the factors influencing missingness are unobserved. 

MNAR is most likely to introduce bias in any subsequent model.  

Dealing with outliers and missing data requires a tailored approach, as these issues are often non-

random and can introduce bias if mishandled. One common solution, imputation, involves replacing 

missing values (or outliers) using statistical or machine learning techniques in order to retain 

useability for analysis or modelling. Simple imputation methods, such as replacing missing values with 

the mean or median, can distort distributions and weaken predictive models. Multiple imputation by 

chained equation (MICE) (White et al., 2009) has been the gold standard for imputation of missing 

data. Recently, various more sophisticated techniques utilising tree-based models such as missForest 

are available and have been outperforming MICE in certain studies (Waljee et al., 2013; Luo, 2022). 

Imputation may not produce reliable results after a certain threshold of missingness is met. 

Unfortunately, this threshold is highly dependent upon type of missingness and dataset-specific. For 

categorical features (e.g. smoking status) a simple solution can be to introduce a new category: 

“unknown”. Should different types of missingness (e.g. blank values vs. missing values) be present, 

these should be considered separately as these could represent different underlying issues.  

3.5.3 Data consistency checks 

Various types of consistency checks can be considered (Table 3).  

Table 3: Consistency checks classes 

Check Examples 

Temporal logic 

checks 

Date of birth precedes policy start date 



Policy start date precedes diagnosis date, death date and end of follow-up  

Diagnosis date precedes death date. 

Demographic 

plausibility 

Only males experience male-specific outcomes (e.g. prostate cancer) 

Only females experience female-specific outcomes (e.g. ovarian cancer) 

Biological 

plausibility 

Biometrics and lab test ranges are within biologically plausible values. 

Format and unit 

consistency 

Lab test values are reported in the same unit  

Dates are reported in the same format (e.g. YYYY-MM-DD). 

Cross-variable 

consistency 

No smoking-related observations present for non-smokers 

No treatment without diagnosis  

Derived features equal the components (e.g. BMI equals weight / height2). 

Statistical 

checks 

Ensuring the observed distributions of observations match the expected ones 

(e.g. normality for height) 

Skewness and kurtosis are within reasonably bounds. 

Where appropriate, data transformations can be performed (3.9.1 Numeric 

features).  

 

3.6 Data Sufficiency and Reliability 

3.6.1 Credibility 

Credibility is the weighting of different estimates to come up with a combined estimate. Generally, 

credibility combines observed experience with a more stable, yet less individualised estimate (i.e. the 

a priori assumption). Credibility is especially useful when observed data is limited or volatile, which 

may result in unreliable model predictions. Traditionally, limited fluctuation, greatest accuracy and 

Bayesian methods have been used for credibility (Atkinson, 2019). More recently, LASSO and 

random effects models allow for credibility to be integrated within the model itself.  

3.6.1.1 Limited fluctuation 

Limited Fluctuation (LF) is widely used by H&C actuaries due to its simple application. There are 

various drawbacks for LF (Atkinson, 2019) including the arbitrary setting of values that determine full 

credibility, the assumption of a fully credible prior and the square root formula reaching full credibility 

prematurely. LF is underpinned by the normal approximation to the Poisson, whose assumptions 

could be violated (e.g. by overdispersion or zero inflation, 3.10.3 Probability distribution). Additionally, 

LF may significantly underestimate credibility for populations with exceptionally light mortality 

experience (Gong et al., 2008). 

3.6.1.2 Greatest accuracy 

The greatest accuracy (GA) theory (also known as Bühlmann credibility) produces a credibility-

weighted rate that blends the observed rate and a portfolio rate using parameter z (the credibility 

weighting). Note this is different from LF, which blends the observed rate with a prior rate.  



The GA method is statistically more robust than LF but requires a portfolio of data from comparable 

risk groups, which means in practice it is seldom used by H&C actuaries. GA may produce a poor 

approximation when the random variable has a heavy tail (Atkinson, 2019).  

3.6.1.3 Shrinkage-based credibility models 

Contrary to LF and GA, shrinkage-based models allow for multivariate credibility using regression 

formulae: 

• Generalised Linear Models (GLMs) are not suitable for credibility since GLMs assume 100% 

credibility and incorporate uncertainty into confidence intervals, p-values etc. However, three 

model classes, Bayesian models, random effects models and penalised regression models 

incorporate some form of shrinkage, similar to credibility.  

• Bayesian methods allow for the explicit incorporation of a prior into a model, allowing for 

updating a prior based on new experience, similar to credibility.  

• Random effects models shrink individual estimates towards a group mean and pure random 

effects models have been shown to be equivalent to Greatest Accuracy credibility (Nelder & 

Verrall, 1997).  

• Penalised regression models can shrink regression coefficients, effectively incorporating 

credibility (Casotto et al., 2023).  

3.6.2 Sample size calculation 

When applying for access to certain health and care datasets, sample size calculations may be 

required by ethics committees to ensure studies are robust and well-designed.  

Sample size calculations prevent unreliable, inconclusive, and non-reproduceable results as well as 

reduce the risk of false negative results (Ioannidis, 2005). This is similar to actuarial credibility theory 

—where a dataset must reach a certain size before we can rely on observed experience rather than 

external assumptions. Sample size calculations may not be relevant for actuarial projects where the 

objective is to extract the maximum number of insights from a dataset, or pricing exercises. 

Sample size calculations require (Sharma et al., 2020): 

• a null hypothesis and alternative hypothesis 

• acceptable significance level (the probability of incorrectly rejecting the null hypothesis), 

typically set at 5% 

• study power (the probability of correctly rejecting the null hypothesis), typically set at 80% 

• expected effect size, typically expressed as a relative risk, odds ratio or hazard ratio 

• underlying event rate in the population 

• margin of error 

• standard deviation in the population 

• a one tail and two tail inferential statistical test  

• a design effect 

  



3.7 Data partitioning 

Machine learning models can learn from greater granularity, opening up the risk of overfitting the data. 

Overfitting occurs when a model learns not only the underlying patterns in the training data but also 

the noise, resulting in poor performance on new, unseen data. To reduce overfitting, it can be good 

practice to split data into testing and training data. Sometimes a third group, validation data, is also 

used. Train data is used for fitting models, validation data for calibrating and evaluating models during 

development, and the test data (sometimes called holdout) is used for evaluating final models. Certain 

models such as gradient boosting can track performance on the test data, whilst fitting on the training 

data and stop once performance on the test data starts deteriorating. To further guard against 

overfitting and improve generalisation to new data, cross-validation can be used. Cross-validation 

goes beyond a single test-train split by dividing the data into multiple subsets (or "folds") and cycling 

through them to train and test the model. Stratifying data splits and folds by important features (e.g. 

age groups) or by the outcome class (e.g. claims) can help reduce variation between splits and folds 

and lead to more reliable model evaluation and selection. 

A particular pitfall in test-train splits is data leakage, where information about the test dataset 

unintentionally ends up in the training dataset, resulting in overly optimistic model performance. An 

example of data leakage is imputing missing data using the entire dataset. For example, using 

average sum assured across the entire dataset (test and train) to impute missing values. This 

imputation leaks information from the test dataset (that will be used for model evaluation) into the 

training dataset. Therefore, any subsequent model may learn patterns that reflect the test data 

distribution rather than the underlying relationship between sum assured and outcome (e.g. claims). 

The contaminated sum assured values may result in overly optimistic model performance on the test 

data, relative to performance on truly unseen data.  

3.8 Candidate features 

Candidate features are those variables initially considered for model development. Some features are 

excluded for non-predictive reasons such as regulatory constraints, ethical considerations (avoiding 

discriminatory variables), domain knowledge (elimination of a feature due to inconsistent recording) or 

data quality issues (incomplete or unreliable data). These external factors constrain variable selection 

before any predictive assessment begins.  

Next, the feature selection process (3.11 Feature selection) evaluates the remaining features for their 

predictive ability on the target variable. For example, if the sum assured were algorithmically dropped 

by stepwise AIC after income level and credit score have been included, these socioeconomic factors 

may well be the underlying drivers and not the sum assured itself.  

We also recommend documenting excluded features along with the main reasons for exclusion. This 

level of transparency can ensure complying with regulations and preserving valuable “negative 

findings” that may be useful for future model refreshes (Ioannidis, 2005). It also helps with proper 

model interpretation, makes modelling decisions more understandable to stakeholders, and supports 

future model validation and refinement. 

In addition to features used in the final model, it could be valuable to consider features that ultimately 

cannot be used for pricing or decision making. For example, considering policy commencement year 

and birth year can prevent cohort effects incorrectly getting assigned to other features. For instance, if 

underwriting standards have recently improved dramatically, this is a policy commencement year 

effect. Without considering policy commencement year, the effect could incorrectly assigned to policy 

duration.  

3.9 Feature engineering 

Feature engineering is the process of creating new variables or transforming existing ones from raw 

data for a model. Variables can also be called “input features”. This often involves generating new 



data fields using existing information. Feature engineering techniques can be split into three 

categories: feature engineering for numeric features (including dates), categorical features (e.g. 

region or gender) and variable interactions (e.g. combining age and smoking status to model risk 

more effectively). 

3.9.1 Numeric features 

Numeric feature engineering involves transforming numeric variables (both discrete and continuous) 

to better capture their relationships with the target variable. Since relationships between predictors 

and outcomes are rarely perfectly linear in real-world data, these transformations are critical for 

improving model performance, especially for linear models, including GLMs and their regularised 

variants, such as Ridge, Lasso and Elastic Net.  

Typically, the process begins with an exploratory data analysis to understand the distribution of each 

numeric feature and its empirical relationship with the target variable. Visualisations such as scatter 

plots and density plots can help with deciding if any transformation is required. For instance, 

logarithmic transformations may be useful for features with significant skewness, whilst non-linear 

relationships with the target may justify including additional polynomial terms. The principal methods 

of transforming numeric features are listed in Table 4.  

Table 4: Overview of feature engineering methods for numeric features.  

Transformation Description Example 

Polynomial 

A polynomial of degree  is a 

function of the form: , 

where  is a positive integer and  is 

the numeric feature to be 

transformed.  

The sickness incidence rate may exhibit 

a quadratic relationship with BMI, as 

both underweight and overweight 

individuals can be at increased risk of 

health issues. Including a squared BMI 

term in the model may therefore be 

appropriate.  

B-spline 

B-splines serve as flexible basis 

functions for fitting curves to features 

that exhibit complex relationships, 

and can be a more adaptable 

alternative to polynomial 

transformations in such cases (Eilers 

& Marx, 1996).  

Mortality shows a complex relationship 

with age, which is more appropriately 

modelled through B-splines than 

polynomials. It tends to reach its lowest 

point in late childhood before rising 

during adolescence, then increasing 

gradually throughout adulthood until 

accelerating with age.  

Fractional 

polynomial 

A fractional polynomial extends the 

concept of standard polynomials by 

allowing for non-integer and negative 

powers.  

Cardiovascular disease risk can be 

modelled by the inclusion of the 

reciprocal of blood pressure, in addition 

to polynomial terms based on blood 

pressure. This is because both very low 

and very high values increase risk.  

Trigonometric 

function 

The application of trigonometric 

functions (sine, cosine and tangent) 

can capture cyclical patterns.  

Life insurance demand typically follows 

annual cycles, driven by consumers’ 

seasonal spending patterns and end-of-

year tax considerations.  

To account for this annual seasonality, 

the day of the year  can be 

transformed with two complementary 



terms:  and . Together 

they can represent any phase of an 

annual pattern, as the model uses 

these transformed features to learn the 

underlying seasonal patterns 

regardless of when peaks or troughs 

occur.  

Bucketing 

Numeric values are grouped into 

discrete intervals or “buckets”. These 

buckets convert the original numeric 

feature into ordinal categories, which 

can help manage outliers, reduce 

noise, and enable models to more 

easily capture the underlying 

relationships.  

Rather than using exact sum assured 

amounts, CMI data groups these values 

into meaningful ranges like £0-£25,000, 

£25,001-£75,000, £75,001-£125,000, 

£125,001-£250,000 and £250,001+.  

This transformation makes patterns 

more visible across different coverage 

levels, reduces noise from uneven 

exposure across values and facilitates 

visuals.  

Log-

transformation 

This converts a highly skewed feature 

into a more normal distribution by 

applying the logarithm function.  

Income level is typically right-skewed, 

with many people earning modest 

amounts and few earning very high 

salaries. Log-transformation allows the 

distribution to be normalised, ensuring 

proportional rises in income (e.g. a 10% 

increase), have a consistent effect in 

the analysis, regardless of whether 

someone earns £30,000 or £300,000.  

Conversion to 

categorical 

variables 

This converts a numeric feature into 

distinct categorical levels (can be 

ordinal).  

Blood glucose measurements can be 

converted into categorical classification: 

“normal” and “diabetic range”.  

Dimensionality 

reduction 

Techniques such as Principal 

Component Analysis (PCA) transform 

a set of possibly correlated numeric 

features into a smaller set of 

uncorrelated features that capture 

most of the original variability.  

In a dataset with numerous clinical 

biomarkers that are strongly correlated 

(e.g. cholesterol, triglycerides, and 

various liver enzymes), PCA can 

reduce these into a few principal 

components. This helps capture the 

dominant patterns while minimising 

overfitting and improving model 

efficiency. 

 

Unlike linear models, most machine learning models such as neural networks and tree-based models 

can discover non-linear relationships on their own without explicit transformation. But feature 

engineering is still important because the model performance can still depend on how the input data is 

represented (Goodfellow et al., 2016, pp.3-4). Particularly for neural network models, the likelihood of 

convergence is higher and the rate of convergence is faster during model training when all features 

are standardised. A popular way of doing this is Z-score normalisation (LeCun et al., 1998), where 𝑧𝑖 

is the normalised version of the original feature 𝑥𝑖, 𝜇𝑖 is the mean of 𝑥𝑖 and 𝜎𝑖 is the standard deviation 

of 𝑥𝑖:  



𝑧𝑖 =  
𝑥𝑖 −  𝜇𝑖

𝜎𝑖

 

3.9.2 Categorical features 

Categorical features are not ingested by most models and require encoding into numeric values. The 

default is often dummy encoding, or one-hot encoding. Both dummy encoding and one-hot encoding 

generate binary columns for each of the categories. Contrary to one-hot encoding, dummy encoding 

drops one category to avoid issues with multicollinearity in linear models (the dropped category 

becomes the intercept or baseline). These encodings are problematic with high-cardinality features 

because of the numerous columns created that increase the risk of overfitting to training data and 

model training computational resources. This problem is exacerbated further when variable 

interactions (3.9.3 Feature interactions) are allowed, whether done automatically by the model or 

manually by domain experts. To mitigate this issue, dimensionality reduction techniques such as PCA 

can be used post-categorical encoding to condense the full feature set into orthogonal principal 

components.  

More sophisticated encoding techniques can be used to transform a categorical column into a dense 

numeric feature. For instance, target encoding can be used by mapping each category to the average 

value of the target variable (Error! Reference source not found.). However, using this method 

naively can cause data leakage (Error! Reference source not found.), which in turn leads to 

overfitting to the training data. An effective means of reducing data leakage is to apply cross-

validation on target coding of each categorical variable, as shown in Figure 1. For unseen data, the 

target encoded values are based on the entire training dataset.  

Categorical embedding provides alternative to target encoding by isolating the individual effect of 

each category. This technique is widely used in Natural Language Processing (NLP), in which words 

are converted into dense numeric vectors with considerably fewer dimensions than one-hot vectors. 

Word embeddings are learnt by training neural networks on tasks like predicting context words 

(Mikolov et al., 2013). In a similar fashion, categorical embeddings can be trained on prediction tasks. 

The resulting model’s coefficients assigned to each category will become its numeric representation. 

Some ML models do not need a separate procedure to encode categorical features, as they can 

natively encode those features. Examples of this kind of models are CatBoost (Prokhorenkova et al., 

2018) and LightGBM (Ke et al., 2017). Also, grouping rare or similar categories together decreases 

cardinality and reduces overfitting. The cost of grouping, however, is reduced granularity that may 

result in losing valuable information differentiating the original categories. Grouping can be performed 

either manually with domain knowledge or automatically with unsupervised learning techniques like K-

means. 

  



Figure 1: How to incorporate cross-validation into target encoding to prevent data leakage in training 

data with 3 random folds.  

 

 

3.9.3 Feature interactions 

Feature interaction happens when the influence of a feature on the target variable relies on the values 

of other features. In these instances, the combined effect cannot be isolated by individual features. 

Most machine learning models can automatically learn feature interactions. This includes tree-based 

models and neural network models. On the other hand, models traditionally used by actuaries are 

those that can be represented explicitly using a regression formula, or more generally speaking, have 

an additive structure: 𝑔(𝐸[𝑦]) =  𝛽0 + ∑ 𝑓𝑖(𝑥𝑖), where 𝐸[𝑦] is the expected value of the target variable, 

𝑔 is the link function and 𝑥𝑖 is a feature. These two model classes represent two distinct modelling 

cultures, which are discussed in 3.10.1 Model selection.  

A main drawback of using additive models is that interaction terms need to be explicitly defined. 

Construction of these interaction terms used to be a cumbersome, time-consuming process requiring 

deep domain expertise. However, with the advancement of data science, an automated way of 

developing additive models is to (Tam & Luteijn, 2025):  

1. create a baseline model that contains just individual effects;  

2. employ Gradient Boosting Machines (GBMs) to identify interaction effects by training the 

model to predict residuals; and  

3. include the interaction terms and retrain the additive model.  

An interaction term most H&C actuaries are familiar with is the interaction between smoking status 

and age in relation to mortality. Figure 2 shows the expected term assurance mortality rates by 

policyholder age across all genders and durations (CMI Working Paper 154, 2021), splitting between 

those underwritten as smokers and non-smokers. The relative mortality of smokers compared to non-

smokers increases with age up to around the 80s, after which it begins to decline slightly. Therefore, 

the smoker excess mortality risk by age cannot be captured by a single loading.  

  



Figure 2: CMI expected term assurance mortality rates by age: smokers vs. non-smokers (all 

genders, all durations; authors’ analysis).  

 

 

3.10 Model design 

3.10.1 Model selection 

Model selection matters since various model types (e.g. GLMs and tree-based models) have different 

strengths and weaknesses in terms of predictive performance, transparency, interpretability, logistics 

and stakeholder trust. Model selection should align with the intended use of the model. For example, 

a pricing model may require more transparency due to regulatory requirements and explanation to 

senior management, whilst an operational model aimed at improving processing efficiency may have 

an alternative internal business priority such as speed and predictive accuracy over transparency.  

We assume familiarity with traditional models such as GLMs. This section will cover data science 

methods that can be layered on top of models (such as regularisation and ensemble modelling) and 

less traditional models (gradient boosting and neural networks).  

Governance and model risk 

It is important to ensure actuaries understand the models used, including intended use and 

weaknesses. Lack of full understanding leaves actuaries open to model risk, defined in TAS 100 as 

“The risk that models are either incorrectly implemented (with errors) or make use of assumptions that 

cannot be justified rigorously, or assumptions that do not hold true in a particular context.” (Financial 

Reporting Council, 2023) 

Model families – two cultures 

An important distinction in model types is between additive models that require a regression formula 

(e.g. GLMs) and models that learn their structure automatically such as tree-based models and neural 

networks. This distinction was described by Breiman as two cultures, with GLMs representing the 



“data modelling culture” and tree-based models and neural networks representing the “algorithmic 

modelling culture” (Breiman, 2001). 

A recent NAIC survey reported regression analysis and regularisation as the most used model types 

in life insurance pricing and that ensemble models (see 3.10.1.2 Ensemble learning) were commonly 

used for other applications such as reducing time to issue a policy (DeFrain et al., 2023). Therefore, 

most actuaries operate within the data modelling culture.  

Trade-offs 

For additive models such as GLMs, the actuary specifies the relationship between predictors and 

target variable a-priori, whilst for tree-based models and neural networks, non-linearity and variable 

interactions are learnt natively from the data, at the cost of transparency. However, it is worth noting 

the advancements in improving the transparency of these models including LIME, SHAP and partial 

dependence plots (3.15 Model explainability) (Bhattacharya, 2022). Additionally, tree-based models 

and neural networks could also be leveraged to identify non-linear relationships and variable 

interactions, prior to building a GLM.  

Logistics of tree-based models and neural networks can be more challenging than some other models 

as these may include the requirements of more infrastructure, computing power and skill sets. 

Context also matters as some stakeholders are not comfortable with certain type of models. Whilst all 

model types benefit from techniques like a test-train split to prevent overfitting, the workflows for tree-

based models and neural networks tend to be more elaborate because of hyperparameter 

optimisation (3.13 Hyperparameter optimisation) and model validation.  

3.10.1.1 Regularisation 

Regularisation is a statistical technique that improves model performance by adding a penalty for 

complexity which encourages simpler models with more reliable predictions. It reduces the influence 

of less significant predictors which prevents overfitting. This is similar to actuarial credibility (3.6.1 

Credibility), which balances individual and collective experience to improve estimates. In both cases, 

the goal is to achieve a robust and generalisable result by controlling for noise and over-reliance on 

sparse or unreliable data. Regularisation, has been implemented in various machine learning 

algorithms such as gradient boosting, neural networks and penalised regression. Regularisation can 

be: 

1. L1 regularisation (LASSO)  (Tibshirani, 1996), where a penalty is added relative to the 

absolute size of the coefficients. L1 regularisation can perform feature selection by shrinking 

regression coefficients to zero, eliminating them from the model.  

2. L2 regularisation (ridge), where a penalty is added relative to the squared values of the 

coefficients, shrinking them towards zero, but not eliminating them from the model.  

LASSO regression analysis has widespread use in the insurance space due to its transparency, 

innate protection against the risk of overfitting and resulting parsimonious models.  

3.10.1.2 Ensemble learning 

Ensemble learning can be used either as:  

1. a meta-model combining predictions from independent models of different types; or  

2. a distinct model class combining weaker learners (i.e. models that perform slightly better than 

random guessing) of the same type systematically into an overall model (e.g. Random Forest 

or GBMs).  



In both cases, ensemble models make use of individual models to make predictions more accurately 

than any one model on its own. This enhanced predictive ability of a group of models is an example of 

the ‘wisdom of the crowd’. The effectiveness of ensemble learning is hinged on two primary factors: 

model diversity and model accuracy. Greater diversity and accuracy among models enhances an 

ensemble’s predictiveness (Ali & Pazzani, 1995). In other words, constituent models should be 

accurate but fail on different examples. This allows the ensemble to average out individual model 

biases.  

Ensemble learning can also reduce the variance of model predictions (Wyner et al., 2017). In this 

context, variance measures how sensitive a model is to changes in the training data. High variance 

means small changes in the training data will lead to large changes in the model’s predictions and is 

not desirable in insurance applications. For example, when a pricing model has high variance, a 

model refresh may lead to significant changes in premiums for policyholders upon renewals, even 

when there have been no material changes in their personal attributes, potentially leading to 

confusion and dissatisfaction among existing customers.  

There are three main categories of ensemble learning, summarised in Table 5.  

Table 5: Main ensemble learning methods.  

Techniques 

As Meta-

Modelling 

Techniques? 

As 

Individual 

Model Type? 

Description Examples 

Bagging Yes Yes 

Parallel training on data 

subsets, combined via 

averaging or voting 

Random Forest, model 

averaging of weak 

learners 

Boosting Yes Yes 

Sequential training 

where each additional 

model corrects previous 

errors 

XGBoost (Chen & 

Guestrin, 2016), 

AdaBoost (Freund & 

Schapire, 1997) 

Stacking Yes No 

Meta-model learns to 

optimally combine base 

model predictions 

Linear regression 

combining predictions 

from individual models, 

e.g. Random Forest, 

GBM, Neural Network  

 

3.10.1.3 Gradient Boosting Machines 

GBMs are a special type of ensemble models that are very effective in analysing tabular data 

prevalent in actuarial analysis.  

GBMs construct multiple decision trees on an iterative basis. Each new tree aims to predict residual 

errors that the previous ones have not been able to collectively accounted for. This approach builds 

upon AdaBoost, one of the first boosting algorithms that popularise boosting as a modelling 

technique. As AdaBoost is designed for binary classification problems (Freund & Schapire, 1997), 

GBMs extend the boosting methodology from exponential loss to any loss function that is 

differentiable (Friedman, 2001). Thus, GBMs are now suitable for both regression and classification 

tasks.  

Since the first GBM methodology was proposed, several best practices have been developed to make 

it more robust and less prone to overfitting. These include stochastic gradient boosting with random 

sampling on training data or features (Friedman, 2002) and introduction of regularisation parameters 



to control model complexity as well as early stopping and learning rate (Bühlmann & Hothorn, 2007). 

More recently, XGBoost, LightGBM, and CatBoost have emerged as the most popular GBM methods 

with their own open-source packages (Mooney, 2022), each with its own distinct training regimes and 

functionalities. Each GBM type has its own bespoke way of growing decision trees:  

• XGBoost constructs trees level-by-level to their full depth and then cuts those branches for 

which loss improvement is below a minimum threshold (Figure 3).  

• LightGBM grows trees leaf-wise, expanding the leaf that reduces loss by the largest amount, 

making them asymmetric (Figure 4).  

• CatBoost grows trees level by level and at each level, every node uses the identical feature 

and splitting value (Figure 4).  

What are the practical implications of different tree growing strategies? LightGBM’s leaf-wise method 

has faster training time, as it takes fewer splits to achieve the same loss reduction when compared to 

the level-wise one. But a downside is that LightGBM is more prone to overfitting with smaller datasets. 

XGBoost and CatBoost are usually more robust against overfitting because of their level-wise 

method. Furthermore, CatBoost’s symmetric tree structure acts as an extra regularisation mechanism, 

thereby reducing tree complexity.    

Figure 3: XGBoost tree structure – before and after pruning with min split loss (𝛾) = 0.05.  

 

  



Figure 4: Light GBM grows trees leaf-wise (asymmetric), while CatBoost grows trees level-wise with 

symmetric structure.   

 

The second key difference is that both LightGBM and CatBoost natively handle categorical variables, 

but XGBoost requires encoding of categorical variables into numerical format before model training. 

For each of LightGBM’s splits during model training, it calculates the gradient statistics for each 

category and use them to sort categories. Gradient statistics are indicative of residual errors. Then it 

finds the optimal two-way grouping using an algorithm with polynomial time complexity (Ke et al., 

2017).  

CatBoost employs random permutations of the training set to produce various artificial timelines. 

When applying target encoding on categorical features (3.9.2 Categorical features) for a decision tree, 

the encoded value for every data point is calculated from those that have appeared earlier on a 

randomly-selected timeline (Prokhorenkova et al., 2018). This remediates the problem of data 

leakage in target encoding. However, the current version of CatBoost’s target encoding does not 

accommodate sample weights (Yandex, 2025). This may cause problems in situations when data 

points have different weights, for instance, in mortality modelling.  

Table 6 compares other key GBM functionalities by the following characteristics:  

• Offset: incorporating a local bias for each data point, which is essential for residual risk 

modelling.  

• Interaction constraints: restricting feature interactions for linear decomposition of model 

predictions, useful when separating the effect of control variables from that of genuine 

features.  

• Monotonic constraints: enforcing increasing or decreasing relationships between features and 

predictions, important for conforming model behaviours to domain knowledge or regulatory 

constraints.  

• Incremental training: continuing training from existing models, with a use case being 

continuously updating models using new data, instead of training models from scratch.  

Table 6: Comparison of functionalities between XGBoost, LightGBM and CatBoost.  

Method Offset? 
Interaction 

Constraint? 

Monotonic 

Constraints? 
Incremental Training? 

XGBoost Yes Yes Yes Yes 



LightGBM Yes Yes Yes Yes 

CatBoost No No Yes No 

 

Despite GBMs being able to model more complex relationships compared to linear models, H&C 

actuaries often prefer linear models for their complete transparency. Several adaptations of GBMs 

have been developed to improve their explainability. For instance, Explainable Boosting Machines 

(EBMs) use gradient boosting with shallow decision trees to enforce an additive structure with 

pairwise interactions between features and model predictions : 𝑔(𝐸[𝑦]) =  𝛽0 + ∑ 𝑓𝑖(𝑥𝑖) +  ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗), 

where 𝐸[𝑦] is the expected value of the target variable, 𝑔 is the link function and 𝑥𝑖 is a feature (Lou, 

2013).  

Nevertheless, the EBM’s open-source Python implementation (InterpretML) is relatively limited in its 

functionality, allowing for just squared loss for regression and logistic loss for classification 

(InterpretML, 2025). Perhaps surprisingly, enforcing an explainable, additive structure merely requires 

the ability to constrain feature interactions and continue training from existing models. The imposition 

of interaction constraints ensures that the model learns just individual effects and pairwise 

interactions. The ability to continue model training enables pairwise effects to be learnt only after the 

individual effects are learnt in previous models. For these reasons, both XGBoost and LightGBM can 

train explainable GBMs akin to EBMs, but with all the amenities available in the newer 

implementations.  

3.10.1.4 Neural network 

Neural networks (NNs), at their core, are composed of interconnected units called neurons, with the 

architecture defining the structure of the neurons and the connection weights as the model 

parameters. Viewing through this lens, NNs can be seen as an extension of GLMs, which have direct 

connections from input features to the output and do not contain any hidden layers. NNs are inspired 

by the biological process by which brains strengthen synaptic connections through learning from 

experience. 

The Perceptron (Rosenblatt, 1958), the first trainable neural network, had a single-layer architecture 

and used a custom learning algorithm for updating its weights. With just one layer, the model 

struggled to learn complex patterns from data. The advent of the backpropagation algorithm 

(Rumelhart et al., 1986) made multi-layer neural network training viable, leading to breakthroughs in 

Convolutional Neural Networks (CNNs) for computer vision (LeCun et al., 1998) and Recurrent Neural 

Networks (RNNs) for NLP (Mikolov et al., 2010). Further innovations in the form of the attention 

mechanism and Transformer architecture (Vaswani et al., 2017) provided the foundation for building 

multi-modal AI chatbots. 

Modelling of tabular data presents different challenges compared to unstructured data. For such work, 

practitioners usually start by using a standard feedforward architecture. This architecture connects 

each neuron in a layer to all the neurons in the next layer. This dense connectivity may lead to the 

model learning spurious patterns, resulting in overfitting especially when using small datasets.  

To reduce model complexity of the feedforward models, simpler architectures can be developed by 

selectively dropping connections. One approach is a GLM-like architecture, where the first layer 

captures individual feature effects and the second layer automatically learns any residual pairwise 

interaction effects (Figure 5). This approach mirrors that of Explainable Boosting Machine discussed 

in 3.10.1.3 Gradient Boosting Machines. L1 and L2 regularisation (Error! Reference source not 

found.) can also be incorporated into the loss function to further mitigate overfitting.  

  



Figure 5: A comparison of a fully connected, feedforward NN and a GLM-like architecture with 

sparser connectivity (right), both using two hidden layers.  

 

Beyond this kind of general architectural adaptations, actuaries have also been developing new NN 

architectures with actuarial applications in mind. One such example is LocalGLMnet (Richman & 

Wüthrich, 2023), which learns context-dependent coefficients for each feature by using fully 

connected layers . Unlike classical GLMs, in this approach each coefficient can vary depending on the 

other feature values, essentially learning interaction effects that are more easily interpreted by model 

users.   

Another method is the Combined Actuarial Neural Network (CANN) (Schelldorfer & Wuthrich, 2019), 

which in effect trains a neural network with GLM predictions as local biases. This combines the 

interpretability of GLMs with the flexibility of NNs. More recently, Credibility Transformer (Richman et 

al., 2025) adapts the Transformer architecture for claim frequency predictions by incorporating the 

credibility theory (3.6.1 Credibility) into the architecture.  

3.10.1.5 Gradient Boosting Machines vs Neural Networks 

There has also been similar development in the general data science community to create NNs 

optimised for tabular data. Recent architectures developed for tabular data include TabNet (Arik & 

Pfister, 2021), DNF-Net (Katzir et al., 2021) and Neural Oblivious Decision Ensembles (NODE) 

(Popov et al., 2020). However, these models struggled to generalise beyond their original datasets 

used in their respective papers, with XGBoost outperforming them on 8 of 11 diverse datasets 

(Shwartz-Ziv & Armon, 2022).  

A larger-scale study across 176 datasets produced more nuanced findings, where the NNs and GBMs 

were more evenly matched overall. Digging deeper, though, GBMs consistently outperformed NNs on 

datasets where features are irregular (e.g. heavy-tailed, skewed) or have high variance (McElfresh et 

al., 2023). GBMs are also generally easier to train, less sensitive to hyperparameter choices, and 

requiring less feature engineering (e.g. scaling numerical variables, imputing missing values) than 

NNs. Nonetheless, modern deep learning packages (e.g. Keras, Torch) enable easier training of non-

standard models, such as zero-inflated models that handle excessive zeros in count data. Whether 

these strengths will make NNs a standard tool for actuarial applications remains to be seen.  

3.10.2 Target variable, weights and offset 

The target variable (or dependent variable) should be meaningful and relevant to the research 

question. Target variable classes can be binary (e.g. claim or survival for a single subject), integers 



(e.g. claim count for a group of subjects, number of hospital visits) or continuous (e.g. blood pressure, 

claim amount). It is advised to visualise the target variable to obtain insights on the probability 

distribution and whether any transformation (e.g. log transformation, scaling) is required.  

Weights can be used to address a biased sample by increasing the weight of under-sampled groups, 

or class imbalance (3.12 Imbalanced data).  

Offsets are often used in regression models to account for exposure (e.g. time, population at risk, or 

an expected baseline or prior), allowing the model to estimate the rate or deviation from that baseline, 

rather than raw counts. This is very common in H&C data analysis, where outcomes often manifest 

over time and therefore have a direct relationship with observation time. For example, in a cohort 

study, the offset can be length of follow-up or expected number of claims (i.e. baseline). When the 

offset is time, the model will fit incidence rates. In the insurance space in particular, the offset is often 

an expected number of claims – if the target variable is set as the actual claims, the model will fit a set 

of adjustments to the expected. The case-control and cross-sectional study designs do not require a 

time component, although the offset can still be used to represent a prior or baseline risk.  

3.10.3 Probability distribution of target variable 

Setting a correct probability distribution for the target variable (e.g. claims) reflects the underlying 

structure of the data and enables accurate predictions. The choice of distribution directly determines 

the appropriate loss function for model training. Commonly used probability distributions are logistic 

for binary outcomes (e.g. claims, lapses), Poisson for count outcomes (e.g. aggregated claims and 

lapses) and Gamma for continuous, positive valued outcomes (e.g. claim amounts).  

Probability distributions are subject to underlying assumptions, for example a Poisson distribution 

assumes the mean equals the variance and the probability of zeros should equal 𝑒−𝜆, where 𝜆 is the 

Poisson mean. In practice, excessive zeros are common in insurance data when the target variable 

has a very low incidence rate, e.g. mortality claims. If Poisson assumptions are violated, alternative 

distributions such as Negative Binomial or Zero Inflated Poisson can be a better fit (Winkelmann, 

2010).  

3.11 Feature selection 

Feature selection refers to a systematic strategy to determine which features (i.e. predictors) should 

be incorporated into a final model. Feature selection is essential to prevent overfitting the data and 

improving interpretability and efficiency of the model. Feature selection strategies can be categorised 

into three categories (Guyon & Elisseef, 2003):  

1. In embedded feature selection, the feature selection process is inherent to the model being 

used for feature selection. An example is LASSO regression analysis (3.10.1.1 

Regularisation), in which features are automatically pruned by the L1 regularisation process. 

2. Filter strategies select subsets of features as a pre-processing step, independently of the 

chosen model class. Filters tend to be computationally inexpensive. An example is when pre-

filtering predictor variables by calculating their correlation with the outcome variable and then 

selecting the top-ranking features for the final model.  

3. Wrapper methods utilise a machine learning method (such as regression analysis) to score 

subsets of features by their predictive power, measured by appropriate loss metrics (e.g. AIC, 

log score, RMSE etc). The best scoring combination of features is selected. Wrappers tend to 

be computationally expensive as a large number of possible combinations of features is 

tested. An example of a wrapper method is the stepwise regression method.  

Feature selection should be performed after feature engineering as features may become more 

predictive following transformation. For example, log sum assured could be more predictive than sum 



assured. For categorical features such as sales channel, the baseline should be carefully considered 

when using dummy encoding (3.9.2 Categorical features).  

3.12 Imbalanced data 

Imbalanced data is common in insurance, where non-claims typically far outnumber claims. 

Imbalanced data can result in undesirable model behaviour. For example, if the cost of a false 

positive equals the cost of a false negative, high accuracy in datasets with rare outcomes can be 

achieved by only predicting negatives (e.g. “no claim”). In practice, the costs of various types of errors 

are usually different. For instance, for models predicting fraudulent claims, the cost of missing actual 

fraud (false negative) outweighs the cost of incorrectly flagging legitimate claims (false positive). 

Imbalanced data can be addressed by three different strategies (Krawczyk, 2016):  

1. Data-level methods modify the collection of samples to balance distributions and/or remove 

difficult samples. Examples include generating new samples for the minority class 

(oversampling) or removing samples from the majority class (undersampling). However, 

undersampling can remove important samples, whilst oversampling can introduce 

meaningless new samples and cause overfitting.  (Krawczyk, 2016; He & Garcia, 2009) 

Following oversampling, removal of Tomek-links (mutual nearest neighbour pairs from 

different classes that are likely misclassified) can reduce noise and further improve predictive 

power by establishing better-defined class clusters in the training set. 

2. Algorithm-level methods directly modify existing learning algorithms to alleviate the bias 

towards majority objects and adapt them to handle data with skewed distributions. An 

example is to increase the weight of the minority class, relative to the majority class. This 

intuitively makes sense as in general the (business) cost of a false negative is larger than the 

cost of a false positive. 

3. Hybrid methods combine the strengths of the data-level and algorithm-level methods. 

Examples are the EasyEnsemble, BalanceCascade and SMOTEBoost algorithms.  (He & 

Garcia, 2009) EasyEnsemble and BalanceCascade build an ensemble of models that are 

trained on different subsets of the undersampled majority class. SMOTEBoost combines each 

boosting iteration (3.10.1.2 Ensemble learning) with newly generated synthetic minority class 

samples.  

3.13 Hyperparameter optimisation 

Most machine learning models have two types of parameters: model parameters and 

hyperparameters. Model parameters (e.g. the weights of neurons in Neural Networks) are learnt and 

optimised during model training. Hyperparameters, in contrast, must be set before model training and 

control the behaviours of learning algorithms (Goodfellow et al., 2016, pp. 120-121).  

(Yang & Shami, 2020) Examples of hyperparameters include:  

• penalty parameter and kernel types in Support Vector Machines; 

• learning rate, activation function and optimiser in Neural Networks; and 

• regularisation strength in ridge or LASSO regression.  

Hyperparameter optimisation (HPO) aims to find the best set of hyperparameters to optimise model 

performance. Due to the large possible number of combinations involved in most HPO, manual 

testing is impractical. Automated HPO methods are needed to efficiently search the hyperparameter 

space (Yang & Shami, 2020). There are various methods employed in automated HPO, each with 

their own strengths and weaknesses.  



We can broadly categorise them into the ones that consider each trial independently (grid and random 

search) and the ones that learn from previous results (Bayesian optimisation): 

1. Grid search entails an exhaustive search in a pre-defined parameter grid. Each combination 

of hyperparameters from the grid is tested in order to find an optimal set of hyperparameters. 

Although this procedure is easy to implement, it can be computationally expensive because it 

needs to search over a large number of hyperparameter combinations to find an optimal set.  

2. Random search draws a set of hyperparameters in each trial from pre-defined probabilistic 

distributions. This approach is less computationally intensive compared to grid search. 

However, it can become less effective with a high number of hyperparameters and/or large 

ranges of hyperparameters, as it does not focus the search on the more promising ranges.  

3. Bayesian optimisation chooses the next set of hyperparameters to test by learning from 

results from the previous trials. It can thus avoid unnecessary evaluations. This method aims 

to balance exploring new regions and focusing on promising areas. However, its sequential 

nature makes parallelisation more challenging and its later trials could also get stuck near 

local optima, which may be far away from the global optimum.  

3.14 Post-model diagnostics 

Post-model diagnostics are crucial steps for assessing the reliability of the model output and ensuring 

that the model can be generalised to unseen data. The representative plots below are extracted from 

our case study on mortality modelling (Tam & Luteijn, 2025), which compares our GAM predictions 

against the CMI mortality tables (CMI Working Paper 154, 2021). The study is based on the term 

assurance experience data between calendar years 2016 to 2020 (CMI Working Paper 162, 2022).  

3.14.1 Residuals vs. Predictions 

This plot helps identify systematic patterns in residuals. These systematic patterns may be indicative 

of underfitting. For example, additional polynomial terms may need to be included in the context of 

GLMs that do not automatically account for non-linearity. They may also be indicative of model 

misspecification, e.g. the frequency model is misspecified as standard Poisson when the equality of 

mean and variance does not hold true.  

A common residual metric are Pearson residuals, which standardise the raw residuals by dividing by 

the expected standard deviation. When the model is correctly specified for normally distributed target, 

the data points will be randomly scattered around zero with constant variance (Dobson & Barnett, 

2018, p. 38). For count models though, it can be challenging to visually interpret the Pearson residual 

plots, which can display parallel curve patterns by distinct response values (i.e. 0, 1, 2,…) when the 

average number of counts is small. Randomised quantile residuals can be used in place of Pearson 

residuals to address this weakness (Feng et al., 2020).  

3.14.2 Cumulative Lift 

Although often associated with classification models, cumulative lift curves can be used to measure 

model performance for all kinds of predictive models. Their main purpose is to evaluate a model’s 

ability to segregate the whole portfolio into different segments.  

The computations involve ordering all the observations by their predicted values in descending order 

and partitioning them into quantiles (e.g. deciles). For each quantile, the mean actual target for each 

segment relative to portfolio baseline is then calculated. For instance, if the riskiest 20% of the 

customers ranked by the model double the actual claim rate relative to the whole portfolio, then the lift 

measure is 2 at the 20% mark.  

Figure 6 shows the cumulative lift plot. Both the GAM predictions and the CMI expectations achieve 

strong performance with the lift measures exceeding 4 in the top decile and following the expected 



downward trajectory to baseline. Under this metric, the performance of the two approaches is 

indistinguishable.  

Figure 6: Cumulative lift comparison between GAM predictions and CMI mortality table.  

 

3.14.3 Double Lift 

Double lift plot is a popular visualisation technique for actuaries, especially in personal lines 

insurance, to compare performance of two models. The core idea is to segment the data by the ratio 

of predictions between the two models and then examine which model’s predictions track closer to 

actual observations across different segments.  

The x-axis shows ratios of Model A to Model B predictions, grouped into quantile or uniform bands. 

The primary y-axis displays the average target variable values (actuals and model predictions), and 

the secondary y-axis shows the volume or weight in each band.  

Figure 7 displays the double lift plot between the GAM predictions and CMI mortality table. This 

shows that the GAM predictions track closer to the actual mortality rates in the segments where GAM 

predictions are lower than CMI rates (i.e. ratio < 1) and where most of the life year exposure lies. 

However, the result is less clear when the ratio is larger than 1, and CMI expected mortality rates 

appear to be more predictive when the ratio is above 1.4 in bands with low exposure.  

  



Figure 7: Double lift plot between GAM predictions and CMI mortality table.  

 

3.14.4 Learning Curves 

Learning curves are diagnostic tools for identifying model overfitting or underfitting. They plot model 

performance with separate lines for training and validation data. The x-axis can be training iterations 

(e.g. epochs for neural networks, number of trees for GBMs) or training data size to determine optimal 

stopping points or whether additional data would improve performance.  

Figure 8 shows the deviance loss versus the number of trees when training the XGBoost model 

training and comparing training and validation losses. Although the validation loss plateaued at about 

2000 trees, the training loss kept on decreasing, showing that beyond this point more trees would 

lead to overfitting.  

  



Figure 8: Poisson deviance loss by number of trees during XGBoost model training.  

 

3.14.5 Actual vs Expected Plot 

Actual vs Expected (A/E) plot measures model performance by comparing mean target values against 

predicted values across the whole range of a major feature. The main objectives are to compare two 

or more competing models’ performance and identify systematic prediction errors as well as 

segments where models perform well or poorly and may thus require actuarial adjustment.   

For instance, in life insurance mortality studies, A/E analysis is usually applied using cohort-based 

approaches. Policyholders are first stratified into distinct cohorts, e.g. by age groups and health 

conditions, and actuaries then assess model performance across these segments.  

Figure 9 compares the GAM and CMI’s mortality predictions against observed targets. Although the 

GAM predictions follow more closely to the actual rates at the youngest and oldest ages, the small 

amount of available data, as measured by life years exposure, and volatility in these segments 

suggest that GAM may be fitting the noisy observations too well. In real-world situations, domain 

experts such as actuaries and underwriters validate whether model behaviours are reasonable and 

decide if the model should be adjusted.  

  



Figure 9: Actual vs expected claim rates by policyholder age, comparing GAM and CMI predictions 

against observed outcomes.  

 

3.14.6 Bias and Fairness 

Model fairness and the prevention of discriminative bias are key considerations in the H&C insurance 

space, where there are regulatory requirements (Data Protection Act 2018; Regulation (EU) 

2016/679, 2016) and the expectation of high ethical standards (Financial Reporting Council, 2023). 

Model fairness can be considered as individual fairness, or group fairness. Individual fairness means 

treating similar people similarly (i.e. fairness on a personal level), whilst group fairness seeks to 

ensure that different groups receive equal treatment on average (Xin & Huang, 2024). Individual and 

group fairness can be in conflict since group fairness may require treating otherwise identical 

individuals from different groups unequally in order to achieve group fairness. Fairness can be 

achieved using various strategies as discussed in Xin & Huang, 2024: 

1. Fairness through unawareness. Protected characteristics are not used in the model. This 

leaves open the risk of indirect discrimination (for example by proxy variables), which 

currently is a legal grey area.  

2. Fairness through awareness. Ensure similar individuals, as defined by a bespoke task-

specific similarity metric are treated the same. 

3. Counterfactual fairness. Ensure predictions are the same should the individual have been 

from another demographic group.  

4. Controlling for the protected variable. Instead of using the actual value for a protected 

characteristic (e.g. ethnicity), the model averages model outcomes across all possible values 

for that characteristic.  

5. Conditional demographic parity. Allows for legitimate variables to explain differences, but 

restricts the influence of proxies.  

Ethical checkpoints specific to bias include examining data sources for embedded discrimination, 

ensuring feature selection can be justified, and testing outputs for disparities across social groups 

(Huang, 2025). Impact assessment evaluates whether the model adversely impacts vulnerable 

customers or groups with protected characteristics when deployed for pricing, underwriting, or 

coverage decisions. This process ensures compliance with anti-discrimination law and facilitates the 



identification of any systematic disadvantages to particular demographic groups might face before 

model implementation.  

3.14.7 Real-World Performance Monitoring 

Continuous monitoring of the model's performance in real-world settings is essential to ensure its 

ongoing reliability. This involves monitoring for data drift and concept drift (3.4.2 Data bias), which risk 

degrading model performance over time. Implementing the actuarial control cycle ensures systematic 

monitoring, evaluation and iterative improvement of the model with new data and evolving experience 

(Espinosa & Zarruk, 2021).  

3.15 Model explainability 

Explainable AI (XAI) is important because it can reduce the risk of bias and potential discrimination. It 

also encourages understanding of the underlying data and builds trust in the model across 

stakeholders and regulators.  

The importance of model explainability in financial services is reflected in a recent industry survey: 

more than 50% of the companies responding to the 2024 survey on artificial intelligence in UK 

financial services reported using three or more methods of explainability (Bank of England and 

Financial Conduct Authority, 2024). The most commonly used methods were Feature importance 

(72%) and SHAP values (64%).  

3.15.1 Feature importance  

Feature importance quantifies the impact of features on model predictions. A large feature importance 

value indicates a feature has a strong influence on the model predictions and vice versa. Permutation 

importance is a very popular method, as it can be used for any models. It involves randomly shuffling 

the values for a given feature and then measuring its impact on the model’s predictions. Here, feature 

importance is defined as the deterioration in model performance before and after shuffling the feature.  

For GBMs (3.10.1.3 Gradient Boosting Machines), feature importance can be measured by the model 

improvement attained when using a variable during model training, how frequent the variable is used 

across trees, or the number of data samples split on that variable. For additive models such as GLMs, 

feature importance can be measured by the coefficient of variation of relativities assigned to each 

level of a variable.  

3.15.2 SHAP values 

SHAP (SHapley Additive exPlanations) values quantify the contribution of each feature to individual 

machine learning model predictions and help understand the relationships between predictions and 

individual features.  

SHAP values are based on the Shapley value from cooperative game theory. SHAP assesses the 

impact of inclusion and exclusion on the model predictions for each feature by examining across all 

possible combinations of other features. When multiple features interact to influence predictions, 

SHAP ensures that the credit for the prediction is shared fairly between them, rather than assigning all 

influence to one of the features (Lundberg & Lee, 2017).  

3.15.3 LIME 

LIME (Local Interpretable Model-agnostic Explanations) trains a simple model in the immediate 

neighbourhood of a data point to explain the full model’s prediction.  

The process for applying LIME to a data point is as follows:  

1. Create several artificial samples by slightly and randomly altering its feature values.  



2. Make predictions using the full model for these artificial samples. 

3. Train a simple model (e.g. GLM) on them in order to estimate the full model’s predictions.  

4. Use the estimated contribution by each feature from the local model to explain the prediction 

for the original instance.  

For instance, consider a policyholder aged 60 who is a non-smoker with a policy duration of 10 years. 

LIME can generate perturbed samples such as age 58, age 62, smoking status variation, and duration 

values of 8-12 years to understand how changes in these features affect the model’s prediction. By 

analysing the predictions for these perturbed samples, LIME helps understand the relationship 

between the prediction and feature values in the vicinity of this specific data point.  

3.15.4 SHAP vs LIME 

SHAP and LIME fall under the same category of what is known as the additive feature attribution 

techniques. This category uses simple explanatory models to approximate the relationship between a 

full model’s prediction and feature values. For each data point, both methods aim to isolate the portion 

of a prediction and assign it to a single feature. But only SHAP has the theoretical guarantee that 

(Lundberg & Lee, 2017): 

1. the explanatory model exactly matches the full model’s prediction for a data point being 

explained; and  

2. if a feature becomes more important in a new model, its contribution to the prediction will not 

decrease.  

As a result, the main advantage of SHAP is that it is optimal from this theoretical standpoint. 

Nevertheless, LIME’s simpler and intuitive approach can be easier to understand and explain to 

stakeholders. 

3.15.5 Global Surrogate Models 

Global surrogate models are interpretable models trained to approximate the predictions from a 

complex, black-box model. For instance, we can train a GLM to explain a GBM’s predictions.  

Unlike local explanation methods, these models provide a global understanding of the full model’s 

behaviour, making it easier to understand the model's overall decision-making process. It is still worth 

checking that the performance of surrogate models does not deviate too much from the full model to 

ensure they are a good approximation.  

3.16 Model interpretation 

Models will detect relationships between features and outcomes such as claims based on statistical 

evidence. However, how can we be sure the detected association is causal, and not based on 

random noise or confounding? To address this question, Sir Austin Bradford Hill formulated nine 

criteria, which became famous in medicine as the Bradford-Hill criteria (Hill, 1965).  

These criteria can also be applied to actuarial science. Understanding whether such associations are 

causal helps actuaries build more robust and interpretable models, particularly when aiming to 

generalise insights or simulate the effects of future changes. The Bradford-Hill criteria are 

summarised in Table 7 along with relevant actuarial examples. 

Table 7: Bradford-Hill criteria (Hill, 1965) 

Criterion Summary 



Strength Stronger associations (e.g. larger relative risks or hazard ratios) between 

exposure and outcome (e.g. claims, lapses) are more likely to be causal 

than weak associations.  

Consistency A causal relationship between exposure and outcome is more likely if the 

association is detected in different locations, times and circumstances.  

Specificity A causal relationship is more likely if the exposure leads to a single specific 

outcome. For example, the link between asbestos exposure and 

mesothelioma claims is highly specific. In contrast, associations like higher 

sum assured and lower all-cause mortality are less specific, as the 

outcome is broad and influenced by many factors.  

Temporality The exposure must precede the outcome.  

Biological gradient 

(dose-response) 

Greater exposure should result in a greater incidence of the outcome. E.g. 

heavy smokers experience higher risk of critical illness than light smokers, 

despite both being exposed to smoking. Likewise, evidence of a sum 

assured effect is strengthened if the magnitude of the effect increases or 

decreases in line with the level of sum assured.  

Plausibility A credible mechanism between the cause and effect strengthens the case 

for causality. An example of this is that increased lapse rates following the 

end of the commission clawback period is plausible.  

Coherence The cause-and-effect interpretation should not materially conflict with 

generally known facts. For example, higher life insurance claim rates 

amongst smokers are coherent with the existing medical literature. On the 

other hand, higher life insurance claim rates amongst larger sums assured 

contradicts the known socioeconomic gradient in mortality rates and could 

warrant further investigation.  

Experiment Causal inference is supported if intervention or removal of the exposure 

changes the outcome. An example of this is a life insurer assigning two 

groups of policy holders different communications and finding a difference 

in lapse rates between the two groups.  

Analogy If similar factors are known to cause similar effects, it is more plausible the 

association is causal. For example, if a life actuary detects an increased 

risk of life insurance claims amongst e-cigarette smokers, the evidence is 

supported by the known increased risk amongst traditional cigarette 

smokers.  

 

4. Implementing the framework 

This framework aims to enhance transparency, reproducibility, and comprehensiveness in the 

reporting and peer-review of health and care data analytics projects. It offers a structured, itemised 

approach, serving as a checklist to ensure that all relevant analytics and decisions are considered 

and documented. The checklist follows the natural workflow of a data analytics project, guiding users 

through each step to prevent omissions and maintain rigor in analysis, reporting and peer-review. 

5. Challenges and considerations 

This framework and the included checklist offer comprehensive guidance to data science aspects in 

health and care actuarial analysis, including common analytical challenges such as data quality and 



model selection and explainability. The main limitations of this framework relate to scope and the risk 

of guidance becoming outdated in the rapidly evolving data science field.  

5.1 Scope 

Broader challenges such as organisational readiness and regulatory requirements remain outside the 

scope of this framework. Likewise, the field of data science is evolving rapidly and, whilst generative 

AI is currently out of scope of the framework, rapid adoption of generative AI and other techniques 

within the H&C actuarial field could require the scope of the framework to be expanded.  

Code quality, whilst currently outside of the scope of the framework, is also of importance to data 

analytics as there are myriad ways to implement the same analytical process, yet well-optimised and 

written code can greatly reduce processing times and improve reliability of analytics.  

5.2 Rapidly evolving landscape 

The exposure of the insurance sector to AI and the rapid advancement of data science methodologies 

means that best practices today may be outdated tomorrow. Continuous learning, industry 

collaboration, and revisiting analytical frameworks are necessary to stay relevant. The finance & 

insurance sector is identified as being the most exposed to disruption by AI, whilst actuaries rank near 

the top of occupations most likely to be impacted by advances in AI (Department for Education, 

2023). Reflecting this trend, 95% of the insurance sector firms that responded to the Artificial 

Intelligence and Machine Learning Survey 2024 reported use of AI (Bank of England and Financial 

Conduct Authority, 2024). Lack of resources and expertise was cited as a key reason for not currently 

using AI / ML in a recent NAIC survey (DeFrain et al., 2023). The actuarial community is well 

positioned to address the AI knowledge gap as indeed the IFoA hosts various data science related 

events, communities and working parties. 

6. Conclusion 

Data science is a rapidly evolving field that can offer tremendous benefits to life and health actuaries. 

This structured and itemised framework offers a robust foundation allowing life and health actuaries to 

systematically consider and document all aspects of data science within an analytical project. By 

promoting transparency, reproducibility, and comprehensive documentation, we hope the framework 

will improve the reporting and peer-review of health and care data analytics projects. 
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