

Simplifying Retirement By Aligning Communication With Retirement Outcomes

Catherine Donnelly, Risk Insight Lab, Heriot-Watt University, Edinburgh, UK

About the speaker

- Catherine Donnelly
- Associate Professor
- Co-PI for project 'Minimising Longevity and Investment Risk while Optimising Future Pension Plans'

- Risk Insight Lab, Heriot-Watt University
 - The research programme is being funded by the Actuarial Research Centre, Institute and Faculty of Actuaries, UK.

Overview

- Background
- Improving communication by product design
- Numerical investigation

Time

4 June 2018 7

Time

Time 4 June 2018 11

What people want

An inflation-indexed retirement income that lasts for their lifetime.

Robert C. Merton (2014) The Crisis in Retirement Planning. HBR.

- Goal= inflation-increasing income for life.
- Risk = failure to meet goal.

How are pension outcomes communicated today?

- Big focus on investment values.
- Risk is not generally communicated.
 - e.g. DC pension pot converts to €872 p.a. income at retirement.
 - But what is not shown:
 - Income goes down by 11% if net return goes down by 0.5%,
 - Income goes down by 22% if net return goes down by 1%,...

Improving communication by product design

Plan today...

Infor the future, but which one?

Improving communication by product design

How much income in retirement?

- Target: The income you'd like to live on.
- Minimum: The minimum income that you are happy to live on.

Preliminary "proof-of-concept"

How much income in retirement?

- Target: The **income** you'd like to **live on**.
- Minimum: The minimum income that you are happy to live on.

Preliminary "proof-of-concept"

How much money at retirement?

- Target: The money you'd like to have at retirement.
- Minimum: The minimum money that you are happy to have at retirement.

Preliminary "proof-of-concept"

How much money at retirement?

ICA

BERLIN 2018

- Target: The money you'd like to have at retirement.
- Minimum: The minimum money that you are happy to have at retirement.

Mr Bean's data

- 55 years old.
- Current value of pension savings = €50000.
- Retiring at age 65.
- For simplicity, no future contributions.

Mr Bean's choices

- Target value of savings at retirement: €61000 (2% p.a.).
- Minimum value of savings: €50000 (0% p.a.).

• Retiring in 10 years' time.

Feedback to Mr Bean

- 42% chance of getting €61,000.
- 14% chance of getting €50,000.
- To increase the chance:
 - Start contributing,
 - Retire later,
 - (Take more investment risk).

Remove target – what happens?

- 42% chance of getting €61000 and no more.
- 14% chance of getting €50000.

Remove target – what happens?

- 33% chance of getting €61000 or more.
- 21% chance of getting €50000.
 (still have the minimum guarantee in place)

Securing a value at retirement

Chance of getting €61K or higher	Target €61K	No target
Minimum €50K	42%	33%
No minimum	51%	41%

Chance of getting €50K or lower	Target €61K	No target
Minimum €50K	14%	21%
No minimum	10%	15%

Securing a value at retirement

- A target increases the chance to hit the target value.
- However, give up upside risk to do this.
- Offsets the cost of the minimum value.

Initial wealth €50K, no min, values in €000s, r = 0.01, $\mu = 0.04$, $\sigma = 0.20$, $\gamma = -2$, T=10years

p	Target=€58K (1.5% p.a.)	Target=€61K (2% p.a.)	Target=€67K (3% p.a.)	No Target
5%	49.4	47.2	45.8	45.6
25%	57.6	55.0	53.4	52.9
50%	58.0	61.0	59.5	58.8
75%	58.0	61.0	66.2	65.4
95%	58.0	61.0	67.0	76.3
Prob. hit Target	74%	51%	23%	N/A
Quantile uplift	109%	104%	101%	N/A

Conclusion

- Target wealth restriction:
 - Increases certainty of level of retirement wealth,
 - Offsets the cost of a minimum wealth,
 - May aid in communication of risk.
- Plan: do this for an income in retirement:
 - Aim for an income close to a target income, and
 - Income should not fall below a minimum income.

Bibliography

- Donnelly, C, Guillén, M, Nielsen, J.P. and Pérez-Marin, A.M. (2018) <u>Implementing individual savings</u> decisions for retirement with bounds on wealth. ASTIN Bulletin, 48(1), pp111-137.
- Donnelly, C, Guillén, M, Gerrard, R. and Nielsen, J.P. (2015) <u>Less is more: Increasing retirement gains</u> by using an upside terminal wealth constraint. *Insurance: Mathematics and Economics*, 64, pp259-267.

Thank you very much for your attention!

Contact details:

Catherine Donnelly

address:	MACS, Heriot-Watt University		
	EH14 4AS Edinburgh UK		
phone:	+44 (0)131 451 3251		
mail:	C.Donnelly@hw.ac.uk		
web:	www.risk-insight-lab.com		

Extra slides if needed

Derivation of the investment strategy

- Black-Scholes market
 - Risky stock price dynamics $\frac{dS(t)}{S(t)} = \mu dt + \sigma dW(t)$,
 - Risk-free bond price dynamics $\frac{dB(t)}{B(t)} = r dt$,
 - Process W a standard Brownian motion.

Derivation of the investment strategy

- Initial wealth $x_0 > 0$.
- Find an optimal strategy π^* that maximises $E[\frac{1}{\gamma}X^{\pi}(T)^{\gamma}]$

subject to $X^{\pi}(T) \in [Minimum, Target]$, a. s.

• An optimal strategy is the hedging strategy that gives wealth $X^{\pi^*}(T) = z_0 Z(T) - [z_0 Z(T) - Target]_+ + [Minimum - z_0 Z(T)]_+.$

Derivation of the investment strategy

- Initial wealth $x_0 > 0$.
- Find an optimal strategy π^* that maximises $E[\frac{1}{\gamma}X^{\pi}(T)^{\gamma}]$

subject to $X^{\pi}(T) \in [Minimum, Target]$, a. s.

• An optimal strategy is the hedging strategy that gives wealth $X^{\pi^*}(T) = z_0 Z(T) \rightarrow [z_0 Z(T) - Target]_+ + [Minimum - z_0 Z(T)]_+.$ From optimal strategy when $X^*(T)$ unconstrained and initial wealth is z_0 .

- Initial wealth $x_0 > 0$.
- Find an optimal strategy π^* that maximises $E[\frac{1}{\nu}X^{\pi}(T)^{\gamma}]$

subject to $X^{\pi}(T) \leq \text{Target}, \text{ a. s.}$

• An optimal strategy is the hedging strategy that gives wealth $X^{\pi^*}(T) = z_0 Z(T) - [z_0 Z(T) - Target]_+.$

- Initial wealth $x_0 > 0$.
- Find an optimal strategy π^* that maximises $E[\frac{1}{\nu}X^{\pi}(T)^{\gamma}]$

subject to $X^{\pi}(T) \leq \text{Target}, \text{ a. s.}$

• An optimal strategy is the hedging strategy that gives wealth $X^{\pi^*}(T) = z_0 Z(T) - [z_0 Z(T) - Target]_+.$

• For
$$t \le T$$
, $X^{\pi^*}(t) = z_0 Z(t) - call(t, z_0 Z(t))$.

- Initial wealth $x_0 > 0$.
- Find an optimal strategy π^* that maximises

subject to $X^{\pi}(T) \leq \text{Target}, \text{ a. s.}$

• An optimal strategy is the hedging strategy that gives wealth $X^{\pi^*}(T) = z_0 Z(T) - [z_0 Z(T) - Target]_+.$

 $E[\frac{1}{\nu}X^{\pi}(T)^{\gamma}]$

• At
$$t = 0$$
, $x_0 = z_0 - call(0, z_0)$.

- Initial wealth $x_0 > 0$.
- Find an optimal strategy π^* that maximises

subject to $X^{\pi}(T) \leq \text{Target}, \text{a.s.}$

• An optimal strategy is the hedging strategy that gives wealth $X^{\pi^*}(T) = z_0 Z(T) - [z_0 Z(T) - Target]_+.$

 $E[\frac{1}{\nu}X^{\pi}(T)^{\gamma}]$

• At
$$t = 0$$
, $x_0 = z_0 - call(0, z_0) \Rightarrow z_0 \ge x_0$

Interpretation of *z*₀

- Quantile uplift z_0/x_0 .
- *p*-quantile

$$Q_p = \inf\{y \in \mathbb{R} : \mathbb{P}[X^{\pi}(T) \le y] \ge p\}.$$

- Without Target constraint: $Q_p = x_0 \beta_p$
- With Target constraint $K: Q_p = \min\{K, z_0\beta_p\}$

