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Mean and variability estimates
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Claims reserving
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Claims reserving problem
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How to estimate the reserve?

• Algorithmically / Stochastic

– E.g. CL / BF / GLMs
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What about uncertainty estimates?



Uncertainty
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Forecast error Observation Forecast



Divide and conquer
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Forecast error

Process error Parameter error Model error



Divide and conquer some more
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External model structure error
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Estimating process error with Monte Carlo simulation

01 May 2024 18

ෝµ𝑖

ෝσ𝑖

For each prediction, 

sample from

𝑓(ෝµ𝑖 , ෝσ𝑖)



Parameter error with bootstrapping

By Biggerj1, Marsupilami - * File:Thist german.png, Autor: MM-Stathttps://postimg.cc/MffYNykZ, Autor Biggerj1, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=135426288
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Model error – Bayes and model sets
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Model set

ℳ
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Actuary’s secret recipe – remove some of the pie
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Some models match the past well 

but go off the rails in the future

Model set

ℳ

• Primary 

model 𝑀∗

Prune away 

models that 

don’t 

extrapolate 

credibly
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Lassoing the Model set
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Bayesian lasso interpretation yields the model set

The Lasso

• Model form:

𝒚 = 𝒉−𝟏 𝑿𝜷 + 𝜺

• Loss function
෡𝜷 𝝀 = 𝐚𝐫𝐠 𝐦𝐢𝐧

𝜷
ℓ 𝒚|𝜷 + 𝝀𝑻 𝜷

• ℓ = negative log-likelihood (NLL)

• . operates elementwise on 𝛽

• 𝜆 = penalty parameter vector with non-negative 

components

• Model set generation

– Each 𝝀 corresponds to a different model

Prior distribution

• Laplace prior distribution

𝝅 𝜷 ∝ 𝒆𝒙𝒑 −𝝀𝑻 𝜷
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Specifying the prior

• Prior specification for a single 

parameter (excluding intercept):

– Mean: 0 

– Variance: 𝑉𝑎𝑟 𝛽𝑗 = Τ2 𝜆𝑗
2

• All parameters (excluding intercept)

– 𝝀𝑻 = 𝜆 1,… , 1

– 𝜆 = 0 → ML solution

– 𝜆→ Inf →Intercept only model

– What 𝜆 to use to lead to sensible model 

sets?? 
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https://en.wikipedia.org/wiki/Laplace_distribution

https://en.wikipedia.org/wiki/Laplace_distribution


Reasonable priors

• Lambda.1se and lambda.min

01 May 2024 26

• Lasso models usually fitted 

using cross validation (CV) 

to select penalty to use

• Popular choices:

• Lambda.min = penalty 

corresponding to 

model with minimum 

CV error

• Lambda.1se = penalty 

where CV error 1 

standard error from 

minimum – protects 

against over-fitting



Extreme (but reasonable?) priors
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Synthetic data sets

• Data set 1

– Satisfies chain ladder assumptions

• Data set 2

– Payment period effect included

• Data set 3

– Accident – development period interaction included for small number of recent cells

• Data set 4

– Like data set 2 but payment period effect depends on development period
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Internal model structure error

• Model error estimated as variance over 

the model set

• Volatile estimates – “thin” posteriors

– 10 – 30 models, not a lot

• Can we enhance with bootstrapping?

– Also allows us to estimate parameter 

error + process error 
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Bootstrapping
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Bootstrapping

Primary model

Resample residuals

Pseudo data set

Refit model and estimate 
quantities of interest

Stratified resampling of 
data

Pseudo data set

Refit model and 
estimate quantities of 
interest
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Semi-parametric bootstrap Alternative: Non-parametric bootstrap



Estimating uncertainty with the bootstrap
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Internal model error:

Mean of the row variances

Parameter error:

Variance of the row means

Separate Monte 

Carlo simulation for 

process error

lambda

Bootstrap 1 2 … N

1 mean, variance

2 mean, variance

.

.

B mean, variance

Pruned 

bootstrap!



Results
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Numerical results
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Data Prior

set True Mean Internal Parameter Process Total

($B) ($B) model error (CoV) error (CoV) error (CoV)

error (CoV)

1 1se 190 189 0.32% 5.30% 3.29% 6.24%

lambda.min 190 192 0.41% 5.15% 2.75% 5.85%

Forecast

2 1se 238 252 1.45% 10.00% 3.93% 10.84%

lambda.min 238 240 1.79% 8.83% 4.69% 10.16%

3 1se 608 703 2.27% 11.23% 5.71% 12.80%

lambda.min 608 589 2.12% 11.19% 5.27% 12.54%

4 1se 216 243 1.37% 8.63% 4.01% 9.62%

lambda.min 216 252 1.81% 12.54% 5.08% 13.65%



Conclusion

35



Take-homes

Components of 
variability

Machine learning 
and potential to 
measure model 

error

Technical approach 
to reserving 

including variability 
estimation

Pragmatic 
bootstrapping tips

01 May 2024 36



Other comments

External model error
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Internal model error leaks into 

parameter error – so consider 

combined estimate only

Model and parameter error are linked
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Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff 

are encouraged.

The views expressed in this presentation are those of the presenter.

Questions Comments
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