

Measuring loss reserving uncertainty with machine learning models

SW

As in IN

Gráinne McGuire

Acknowledgements

- Joint work with Greg Taylor, University of New South Wales, Australia
- Greg's acknowledgements
 - financial support under Australian Research Council's Linkage Projects funding scheme (project number LP130100723)
 - Discussion with colleagues: Benjamin Avanzi, Bernard Wong, David Yu
- Gráinne's acknowledgements:
 - Support from Taylor Fry

Overview

- Introduction
- Claims reserving
- Uncertainty
- Lassoing the model set
- Bootstrapping
- Results
- Conclusion

Reference material

- Paper:
 - Model error (or Ambiguity) and its estimation with particular application to loss reserving
 - <u>https://doi.org/10.3390/risks11110185</u>, Risks 2023, 11(11), 185
- Tutorial example, including full R code:
 - Model error via regularised regression CAS monograph data
 - https://grainnemcguire.github.io/post/2023-05-04-model-error-example/

Introduction

MISIN

the

Ale tatilly

5

Take-homes

Technical approach to reserving including variability estimation

Pragmatic bootstrapping tips

Machine learning and potential to measure model error

Components of variability

Transfer ideas to other areas

PERITIA RATIO

UL ACLUUITES

Claims reserving

WIJW

the

AFS THE NY

8

Claims reserving problem

How to estimate the reserve?

- Algorithmically / Stochastic
 - E.g. CL / BF / GLMs

What about uncertainty estimates?

Uncertainty

ANY JON ANY HOLEN

THE STORY

11

Divide and conquer

Forecast error

Divide and conquer some more

External model structure error

Estimating process error with Monte Carlo simulation

For each prediction, sample from

 $f(\widehat{\mu}_i, \widehat{\sigma}_i)$

Parameter error with bootstrapping

By Biggerj1, Marsupilami - * File:Thist german.png, Autor: MM-Stathttps://postimg.cc/MffYNykZ, Autor Biggerj1, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=135426288

Model error – Bayes and model sets

Actuary's secret recipe – remove some of the pie

Some models match the past well but go off the rails in the future

Lassoing the Model set

AR AR ARE

THE WO

22

Bayesian lasso interpretation yields the model set

The Lasso

• Model form:

$$y = h^{-1}(X\beta) + \varepsilon$$

Loss function

 $\widehat{\boldsymbol{\beta}}(\boldsymbol{\lambda}) = \arg\min_{\boldsymbol{\beta}} [\ell(\boldsymbol{y}|\boldsymbol{\beta}) + \boldsymbol{\lambda}^T |\boldsymbol{\beta}|]$

- ℓ = negative log-likelihood (NLL)
- |. | operates elementwise on β
- λ = penalty parameter vector with non-negative components
- Model set generation
 - Each λ corresponds to a different model

Prior distribution

• Laplace prior distribution $\pi(\beta) \propto exp(-\lambda^T |\beta|)$

Specifying the prior

- Prior specification for a single parameter (excluding intercept):
 - Mean: 0
 - Variance: $Var[\beta_j] = 2/\lambda_j^2$
- All parameters (excluding intercept)
 - $\lambda^T = \lambda(1, \dots, 1)$
 - $\lambda = 0 \rightarrow ML$ solution
 - $\lambda \rightarrow Inf \rightarrow Intercept$ only model
 - What λ to use to lead to sensible model sets??

Reasonable priors

• Lambda.1se and lambda.min

- Lasso models usually fitted using cross validation (CV) to select penalty to use
- Popular choices:
 - Lambda.min = penalty corresponding to model with minimum CV error
 - Lambda.1se = penalty where CV error 1 standard error from minimum – protects against over-fitting

Extreme (but reasonable?) priors

Synthetic data sets

- Data set 1
 - Satisfies chain ladder assumptions
- Data set 2
 - Payment period effect included
- Data set 3
 - Accident development period interaction included for small number of recent cells
- Data set 4
 - Like data set 2 but payment period effect depends on development period

Internal model structure error

D-4- 0-4	LASSO Model		Loss Rese	5 (;) 10005 (0.10	
Data Set		True Forecast		Estimated IMSE (COV)	
			Raw 1se	Posterior	
		AUDB	AUDB	AUDB	96
1	Simple	190		198	0.7
	1se	190	194	194	0.4
	minCV	190		194	0.5
	Complex	190		203	0.8
2	Simple	238		260	0.1
	1se	238	261	260	0.1
	minCV	238		244	3.4
	Complex	238		272	3.1
3	Simple	608		877	1.7
	1se	608	778	777	6.8
	minCV	608		687	2.0
	Complex	608		875	5.8
4	Simple	216		244	0.2
	1se	216	247	247	0.3
	minCV	216		268	0.7
	Complex	216		276	1.2

- Model error estimated as variance over the model set
- Volatile estimates "thin" posteriors
 - -10-30 models, not a lot
- Can we enhance with bootstrapping?
 - Also allows us to estimate parameter error + process error

Bootstrapping

AND AN AND

THE THE WY

30

Bootstrapping

Estimating uncertainty with the bootstrap

THE SUP AN LINE

THE STORY

33

Results

Numerical results

Data	Prior	Forecast							
set		True	Mean	Internal	Parameter	Process	Total		
		(\$B)	(\$B)	model	error (CoV)	error (CoV)	error (CoV)		
		error (CoV)							
1	1se	190	189	0.32%	5.30%	3.29%	6.24%		
	lambda.min	190	192	0.41%	5.15%	2.75%	5.85%		
2	1se	238	252	1.45%	10.00%	3.93%	10.84%		
	lambda.min	238	240	1.79%	8.83%	4.69%	10.16%		
3	1se	608	703	2.27%	11.23%	5.71%	12.80%		
	lambda.min	608	589	2.12%	11.19%	5.27%	12.54%		
4	1se	216	243	1.37%	8.63%	4.01%	9.62%		
	lambda.min	216	252	1.81%	12.54%	5.08%	13.65%		

Conclusion

WISNE

10

AFE STATING

35

Take-homes

Components of variability

Machine learning and potential to measure model error

Technical approach to reserving including variability estimation

Pragmatic bootstrapping tips

Other comments

External model error

Model and parameter error are linked

Internal model error leaks into parameter error – so consider combined estimate only

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.

