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There has been an increase in both frequency and severity of natural disasters
globally
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We have observed an increase in frequency of weather-related claims Small
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Severity of weather-related claims has increased 10-fold over last decade
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Reinsurance claims exceed R80bn in SA over last 3 years

Sasria claims from July unrest hit R32 billion w0 BUSINESSTECH
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° ° R Bad news for insurance claims in South

Africa
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SOUTH AFRICA

Ri7bn — That’s the estimated cost of SA insurance industry drowning in claims after KZN flash floods,
KZN floods damage Covid-19 and July riots

24 April 2022 - 17:04

SHOCK TO THE SECTOR

CLAIMS & BENEFITS PAID
2018 R491-billion

2020 R523-billion

Source: Old Mutual Insure estimates, news articles, industry discussions 2021 RB08-billion
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Physical risks are the tangible effects that
climate has on organizations-i.e. flooding,

wildfire, rising sea levels etc. y p==.

Modelling challenges:
 Data
* Finding the correct source
* Scarcity
 Complexity
* Linking to traditional insurance data
* Long time horizon
* Non-linear impacts
* Interconnected risks

* Regional variability




Macro and Micro Modelling
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- Pre-existing models of shocks to short-
term insurance portfolio:
Earthquake
Hail
Wildfire
- Flood
- Windstorm
- Models calibrated to recent experience
of these perils
- Run at a portfolio level
- Can we modify these models to take
climate change into account?

of Actuaries

Pricing data links individual policies
in portfolio to claims data

Can also acquire climate data
looking at experience at granular
level...

... .g. precipitation data in small
areas for a long period

Can we link climate data to our

traditional pricing to quantify effect

of climate change?




Macro - Climate Change VaR
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Project aim

Can we link climate data to our traditional pricing to quantify effect of climate change?

Incorporate highly granular precipitation data, curated by meteorologists, into traditional short-term pricing
datasets.

Fit statistical models to observe predictive value of this addition.
Quantify the potential impact of using future predicted precipitation levels in rating processes

Quantify the impact of increased precipitation (driven by climate change and La Nina weather system) on
insurance risk

Project with support from:

University of the Witwatersrand (Prof. Rendani Mbhuva, Adam Balusik)
University of Pretoria (Prof. Willem Landman)

ETH ZUrich (Prof. Dr. Mario V Withrich)

OMI Catastrophe & Climate Modelling (Caesar Balona)

Working paper in progress
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 Overview of steps taken

Select one line of business
Geolocate LoB pricing file using external service provider

Obtained CHIRPS precipitation dataset

Created precipitation grid across SA at a 0.05’ longitude by 0.05" latitude level of granularity (~25km?)
Mapped geolocated pricing file to the precipitation grid

Fit Gradient Boosted Machines (GBMs) model to predict claims experience using factors used in the current
pricing environment, with and without precipitation

Fit a Neural Net to disperse overall South African rainfall forecasts to a grid level
Refit models using forecasted rainfall
Analyzed model results on an actual and forecasted basis
e Feature importance
* Dependence plots
* Predicted loss experience by yearly rainfall experience (actual and forecasted basis)
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« Data Considerations

e Geolocated LOB pricing file

e ~13mil rows and many columns
e CHIRPS precipitation dataset
* ~19.5mil rows and 4 columns
« Memory management and optimisation becomes very important
* Python —Pandas
e Batch processing
 Memory efficient data storage

 Minimum viable datatypes
e Use vectorized operations where possible
e Utilize GPU for modelling
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Precipitation — CHIRPS Overview

Climate
0 Hazards

Center
UC SANTA BARBARA

e CHIRPS Dataset

Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) is a 35+ year quasi-global rainfall
data set.

Spanning 50°S-50°N (and all longitudes) and ranging
from 1981 to near-present.

CHIRPS incorporates in-house climatology, 0.05°
resolution satellite imagery, and in-situ station data to
create gridded rainfall time series for trend analysis and
seasonal drought monitoring.

preliminary CHIR
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South Africa By Province
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Precipitation Over Time LR Over Time
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« Gradient Boosted Machines (GBMs)

e Gradient boosting is a machine learning technique used in regression and classification tasks

* It produces a prediction model in the form of an ensemble of weak prediction models, which are
typically decision trees.

 Each model trained in the ensemble is fit using the residuals produced by previous models and a
different subset of the underlying data to ensure that an overall improvement in a chosen loss metric
is obtained until no further improvement can be made

 Neural Nets (NNs)

* A neural network is a series of algorithms that endeavors to recognize underlying relationships in a set
of data through a process that mimics the way the human brain operates.

* Neural nets generally consist of an Input Layer, Hidden Layers and an Output layer, with optional
Embedding layers.

* Complicated representations of input data learned in hidden layers, with subsequent layers
representing regressions on the variables in hidden layers.
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Loss prediction given precipitation experience

Frequency GBM Severity GBM

Model Gradient Boosted Machine Model Gradient Boosted Machine
Form Poisson Regression Form Gamma Regression
Algorithm LightGBM Algorithm LightGBM

Train/Test Split Time-based Train/Test Split Time-based

Loss function

Inputs

Weight
Output

Validation score

Poisson Negative Log-
Likelihood

Traditional rating factors +-
(Grid Precipitation)

Exposure
Frequency

Poisson Mean Deviance

Loss function

Inputs

Weight
Output

Validation score

Gamma Negative Log-Loss
Likelihood

Traditional rating factors +-
(Grid Precipitation)

Exposure
Severity

Gamma Mean Deviance



Modelling Implementation

Forecasting precipitation
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Metrics considered

Poisson/Gamma mean deviance
* Model goodness of fit tests to be minimized
Feature importance — split, gain
* Measure of value added to the model by inclusion of feature
Policyholder sensitivity
 Measure of feature impact for a single risk profile
Partial dependence
* Measure of feature impact when entire dataset is held constant aside from feature in question
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Out-of-sample validation scores

Poisson/Gamma Deviance

Frequency GBM w/o precipitation 0.1687
Frequency GBM w/ actual precipitation 0.1679
Frequency GBM w/ forecasted precipitation 0.1683
Severity GBM w/o precipitation 1.7833
Severity GBM w/ actual precipitation 1.7465

Severity GBM w/ forecasted precipitation 1.7775
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Frequency GBM Implementation

Traditional Pricing Dataset With Actual Precipitation Data
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Modelling Resulis

Featuras

Frequency GBM Implementation
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With Forecasted Precipitation Data
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Frequency GBM Implementation

Sample P/H Sensitivity (Base Risk Profile) Partial Dependency Plot
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Severity GBM Implementation
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With Actual Precipitation Data
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Severity GBM Implementation

Features

Traditional Pricing Dataset
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With Forecasted Precipitation Data
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Severity GBM Implementation

Sample P/H Sensitivity (Base Risk Profile)

Partial Dependency Plot
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Overall Book Sensitivity to Yearly Precipitation Experience (2021 Base)

Frequenc
q y Yearly Precip vs No of Claims (2021 Base)
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Overall Book Sensitivity to Yearly Precipitation Experience (2021 Base)

Severity
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Modelling Resulis

LES

Overall Book Sensitivity to Yearly Precipitation Experience (2021 Base)

Loss Experience

Yearly Precip vs Loss Experience (2021 Base)
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Precipitation induced
volatility on loss
experience was

calculated to equal
61%
of the associated
SAM measure of
volatility.
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e Conclusions

e Shown that traditional short-term pricing datasets can be linked to open-source highly granular

precipitation data

 Demonstrated that precipitation data is a highly predictive factor when modelling insurance risk
 Demonstrated the relationship between changes in actual precipitation and frequency and severity

* Obtained precipitation forecasts that may be used for practical implementations (pricing/proactive risk
management)

 Demonstrated that precipitation forecasts provide similar predictive value

e Obtained distribution of loss experience given differing years of precipitation experience for proactive
risk management.
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* New micro level datasets can enhance the accuracy of actuarial predictive modelling...
.. what other projects should we be thinking of?

e Other weather-related datasets => frequency/severity

e Air pollution => mortality

e Value of partnering with academic institutions who can provide novel expertise

Contact details:
Ronald.Richman@ominsure.co.za

Kovlin.Perumal@ominsure.co.za
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