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What if the proportional hazards assumption 

is not met?

• For a Cox model 𝜇 𝑡 𝛽, 𝑍 = 𝜇0 𝑡 exp(𝑍Τ𝛽) we discussed two 

ways to cope with non-proportionality:

• Stratify the analysis on violating variable: 𝜇𝑠 𝑡|𝛽, 𝑍 = 𝜇0𝑠 𝑡 𝑒𝑍
Τ𝛽

- baseline hazards vary by strata s;

- Here we add an option of modelling shape of baseline hazards

• Include time-varying effects: 𝜇 𝑡, |𝛽, 𝑍 = 𝜇0 𝑡 𝑒𝑍
Τ𝛽(𝑡)

- Coefficients 𝛽(𝑡) are continuous functions of time

• Use landmark analysis
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Parametric “Double-Cox” regression

Components:

• A baseline hazard function 
(which changes over time).

• The risk factors Z have a log-
linear contribution to the 
force of mortality which does 
not depend on time t. 

The Cox parametric regression model 

Weibull or Gompertz baseline hazard function 
with scale λ and shape k.  Shape k is modelled 
as k=k(Z). 

𝜇(𝑡|𝑍) = 𝜇0(𝑡|𝑍) exp(𝑍
Τ𝛽)

Baseline hazard 
function

𝛽 is a vector of unknown 
parameters for scale and 
Z is a vector of covariates 

𝜇0(𝑡|𝑍) =
𝑘(𝑍)

λ

𝑡

λ

𝑘(𝑍)−1

𝜇0 𝑡|𝑍 = λ exp(𝑘(𝑍)𝑡)

Additional regression 
model to allow varying 
shape  depending on  
covariates
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k(Z)=𝑘0𝑒
𝑍Τβ

𝑘



Cox model with shared frailty

Proportional hazards model with frailty:

𝞵 𝑡|𝑈, 𝑍 = 𝞵0 𝑡 𝑈𝑒
𝑍Τβ,

For mathematical convenience, it is frequently assumed that frailty U

is gamma-distributed with mean 1 and unknown variance σ2:

𝑈 ~ Gamma(σ−2,σ−2).

The frailty variance σ2 characterizes heterogeneity in the population.

Shared frailty assumption:

All patients from the same unit /clients from the same company are in the 

same cluster 𝑗, 𝑗=1,…,𝐽 and share the same frailty 𝑈j.  
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“Double-Cox” model with shared frailty

• Standard shared frailty Cox model : 𝞵 𝑡|𝑈, 𝑍 = 𝞵0 𝑡 𝑈𝑒
𝑍Τβ;

• Baseline hazard 𝞵0 𝑡 =𝞵0 𝑡; 𝜆, 𝑘 ;

• Cox-like  parameterization for the shape of the baseline hazard function:                

k(Z)=𝑘0𝑒
𝑍Τβ

𝑘;

• Frailty U ~ Gamma with mean 1 and variance σ2.

• If needed, competing risks can be introduced through correlated shared frailty 

components.

Find MLE of the vector of unknown parameters θ=(𝜆, 𝑘0, σ
2, β, βk).

This model was introduced in [1] for analysis of time to revision/

time to death after hip replacement.
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Different shapes of cumulative hazards for  

revision surgery after hip replacement
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Extended Cox regression with time-varying 

covariates and regression effects
A model may include both constant and time-varying effects:

𝜇 𝑡, |𝛽, 𝑍 = 𝜇0 𝑡 𝑒𝑍 𝑡 Τ𝛽 𝑡 +𝑋 𝑡 Τ𝛾

• Here Z(t) and X(t) are time-varying covariates (updated over time).

• Z(t) are covariates with time-varying hazards β(t), and X(t) covariates 

have constant hazards 𝛾.  

• See  Ch. 6 in the book by Martinussen&Scheike [2] and  their  R 

package timereg for analysis of extended multiplicative hazards 

models.

• Their program timecox can test for and fit models with both constant 

and time-varying effects.
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Inference in extended Cox model

• It is easier to estimate cumulative regression coefficients 

B(t)=∫
0

𝑡
β 𝑠 ds, their estimates are n 1/2 -consistent and 

asymptotically Normal.

• This allows to draw confidence bands for B(t)  and to test 

hypotheses about them.

• A simple test of βp(t)= βp is based on maximum deviation of the 

cumulative coefficient Bp (t) from a straight line over an interval 

[0,Τ].

• Similarly, cumulative residuals are used for various diagnostic 

purposes.
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Plots of cumulative coefficients for DM2 study
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Robustness of the Cox model

Consider once more the extended Cox model

𝜇 𝑡|𝛽, 𝑍 = 𝜇0 𝑡 𝑒𝑍
Τ𝛽 𝑡 . 

The cumulative hazard M(t|Z)=-ln(S(t|Z). The ratio

𝑀(𝑡|𝑍)

𝑀
0
(𝑡)

= 
∫𝜇0 𝑠 exp(ZΤ𝛽 𝑠 )ds

∫𝜇0 𝑠 ds
≈
exp∫𝜇0 𝑠 (ZΤ𝛽 𝑠 )ds

∫𝜇0 𝑠 ds
= exp(ZΤ  𝛽(t)), 

where   𝛽(t)=
∫𝜇0 𝑠 𝛽 𝑠 ds

∫𝜇0 𝑠 ds
, if the variance 

∫𝜇0 𝑠 (ZΤ (𝛽 𝑠 − 𝛽(t)))2ds

∫𝜇0 𝑠 ds
is 

small. This means that the Cox model gives approximately correct 

predictions of surviving up to time t. 
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What is landmark analysis

In the landmarking approach, dynamic predictions for the 

conditional survival after t=𝑡𝐿𝑀 is used on current information for 

all patients still alive just prior to 𝑡𝐿𝑀. [Van Houwelingen, H. and 

Putter, H., 2011]

The sliding landmark model is the simple Cox model

ℎ 𝑡 𝑥, 𝑡𝐿𝑀 , 𝑤 = ℎ0 𝑡 𝑡𝐿𝑀, 𝑤 exp 𝑥𝑇β𝐿𝑀 , 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑤

for the data set obtained by truncation at 𝑠 = 𝑡𝐿𝑀 and 

administrative censoring at 𝑡𝐿𝑀+w.

ℎ0 𝑡 𝑡𝐿𝑀 , 𝑤 is the baseline hazard or force of mortality.

This is a convenient way to obtain a dynamic prediction without 

fitting a complicated model with time-varying effects.
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Super-prediction data set

• Fix the prediction window w; [say, w=5 years]

• Select a set of prediction time points {𝑠1,…, 𝑠𝐿}, 20 ≤ L ≤ 100; [say, 

every 6 months.]

• Create a prediction data set for each 𝑡𝐿𝑀=𝑠𝑙 by truncation and 

administrative censoring;

• Stack all these data into a single “Super-prediction data set”.  The 

subsets corresponding to a given prediction time 𝑡𝐿𝑀=𝑠𝑙 are “strata”. 

• The risk set R(𝑡𝑖) for an event time 𝑡𝑖 is present in all strata with   𝑠 ≤
𝑡𝑖 ≤ 𝑠 + 𝑤. Passing from stratum s to s+1 corresponds to sliding the 

window over the time range.

• Individual life j contributes up to w/|𝑠𝑙+1 − 𝑠𝑙| times in each prediction 

window. [10 times when w=5 and the time shift 𝑠𝑙+1 − 𝑠𝑙 is 6 months.]
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Sliding Cox model results (crude model)
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Integrated partial log-likehood landmark 

model - ipl

The landmark super prediction model with window w and letting 

the regression coefficients β𝐿𝑀 depend on time 𝑡𝐿𝑀 is given by

ℎ 𝑡 𝑥, 𝑡𝐿𝑀 = 𝑠,𝑤 = ℎ0 𝑡 𝑠, 𝑤 exp 𝑥𝑇β𝐿𝑀 𝑠 , 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑤

where β𝐿𝑀 𝑠 = 𝑗=1
𝑚 γ𝑗 𝑓𝑗 𝑠 .

• 𝑓𝑗(𝑠) are the basis functions, 𝑓1(𝑠)=1, 𝑓𝑗(0)=0 for j>1, and γ𝑗 are the 

parameters, with β𝐿𝑀 0 = γ1 .

• The parameters of this model are estimated by maximizing the integrated 

(over s) partial log-likelihood introduced by van Houwelingen (2007).

• This approach is based on a stratified (on s) analysis with smooth 

landmark dependent effect β𝐿𝑀 𝑠 and separate estimated baseline 

hazards for each stratum. 



Pseudo-partial log-likelihood landmark model 

- 𝒊𝒑𝒍∗
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In the 𝒊𝒑𝒍∗ model, the baseline hazard is modelled directly as

ℎ0 𝑡 𝑠, 𝑤 = ℎ0 𝑡 exp θ 𝑠 ,

for proper basis functions 𝑔𝑗 𝑠 with 𝑔𝑗(𝑠1 )=0, resulting  in

where      θ 𝑠 = 𝑗=1
𝑚 η𝑗 𝑔𝑗 𝑠

ℎ 𝑡 𝑥, 𝑡𝐿𝑀 = 𝑠,𝑤 = ℎ0 𝑡 exp 𝑥𝑇β𝐿𝑀 𝑠 + θ 𝑠 , 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑤,

where β𝐿𝑀 𝑠 and θ 𝑠 are the mth degree polynomials in s.



Adjusted hazard of all-cause mortality 

associated with current statin prescription
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Predicted probabilities of survival in a window 
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Predictions for all s ϵ [𝑠1, 𝑠𝐿] in the 𝒊𝒑𝒍∗ model are 

obtained from estimated cumulative hazards

𝐻 𝑠 + 𝑤 𝑥, 𝑡𝐿𝑀 = 𝑠 = exp(𝑥𝑇β𝐿𝑀 𝑠 + θ 𝑠 ) (𝐻0
∗(s+w)-𝐻0

∗ (s-))

This is because  in the 𝒊𝒑𝒍∗ model

ℎ 𝑡 𝑥, 𝑡𝐿𝑀 = 𝑠,𝑤 = ℎ0 𝑡 exp 𝑥𝑇β𝐿𝑀 𝑠 + θ 𝑠 , 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑤,

only the baseline hazard ℎ0 𝑡 depends on t. 



Probabilities of death for 1936-1940 cohort

30/10/2019



Baseline hazard in the statins landmark model
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The baseline hazard is well approximated by the Gompertz hazard



The 𝒊𝒑𝒍∗landmark model in actuarial research
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In the 𝒊𝒑𝒍∗ model, the hazards are modelled as

ℎ 𝑡 𝑥, 𝑡𝐿𝑀 = 𝑠,𝑤 = ℎ0 𝑡 exp 𝑥𝑇(𝑠)β𝐿𝑀 𝑠 + θ 𝑠 , 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑤,

where β𝐿𝑀 𝑠 and θ 𝑠 are the kth and the (k-1)th degree polynomials of 𝑠 = 𝑡 − 𝑡0.

The log-hazards are 𝜆(𝑡|𝑥, 𝑡0)= 𝜆0(t)+𝑥𝑇(𝑠)β𝐿𝑀 𝑠 +θ 𝑠 . 

For Gompertz baseline hazard, 𝜆0(t)=a+bt.

Values of a and b can be estimated from the estimated baseline hazard or 

substituted for a particular population. Next, we can obtain cumulative hazards, 

survival and period life expectancy for various scenarios of changing risks x(s).



Discussion and conclusions 

• The most general form of extended Cox regression with time-

dependent effects is difficult to use. To make it relevant to 

actuarial research we also need to consider the shape of the 

baseline hazards.

• Parametric “double-Cox” model is a useful replacement for the 

stratified Cox model which also models shape of baseline 

hazards and can be easily used for actuarial purposes.

• Landmark analysis is a convenient way to model dynamically 

changing survival data. The ipl* model conveniently lends itself 

to actuarial modelling.

• Extra development is required to use the results for population 

LE projections using methodology similar to that in 

Kulinskaya et al. (2019) .
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