

Actuarial Research Centre

Institute and Faculty of Actuaries

Actuarial Research Centre (ARC)

PhD studentship output

The Actuarial Research Centre (ARC) is the Institute and Faculty of Actuaries' network of actuarial researchers around the world. The ARC seeks to deliver research programmes that bridge academic rigour with practitioner needs by working collaboratively with academics, industry and other actuarial bodies.

The ARC supports actuarial researchers around the world in the delivery of cutting-edge research programmes that aim to address some of the significant challenges in actuarial science.

Institute and Faculty of Actuaries

Multi population mortality models

Author Vasil Enchev

Supervisors Dr. Torsten Kleinow Prof. Andrew Cairns

19 October 2015

Motivation

- The mortality at older ages is still under considerable research
- Limited research on the multi population models
- Vast space for improvement

Aims

- We aim to derive better multi population mortality models
 - Consistent and robust fitting method
 - Identifiability problems correction
 - Forecast joint mortality rates based on the models

Li and Lee – fit of the model $\Rightarrow ln[m_{(x,t,i)}] = \alpha_{(x,i)} + B_{(x)}K_{(t)} + \beta_{(x,i)}K_{(t,i)} + \varepsilon_{(x,t,i)}$

- Maximum likelihood estimation
 - One step single likelihood function
 - Newton-Raphson iterative process
- Identifiability problems
 - Standard constraints —
- Model specifics
 - Very heavy model
 - A lot parameters to estimate total of 802
 - Flat or almost flat log-likelihoot function at some dimmentions

Equivalent fitted mortality rates with different set of estimated parameters

$$\sum_{x} B_{(x)} = 1 \qquad \sum_{t} K_{(t)} = 0$$
$$\sum_{x} \beta_{(x,i)} = 1 \qquad \sum_{t} \kappa_{(t,i)} = 0$$
for every $i=1,2,...,7$

Li and Lee – estimated parameters

Li and Lee – fitted mortality rates

6

Li and Lee – forecasting the parameters $ightarrow ln[m_{(x,t,i)}] = \alpha_{(x,i)} + B_{(x)}K_{(t)} + \beta_{(x,i)}K_{(t,i)} + \varepsilon_{(x,t,i)}$

Two time dependent parameters to forecast

Vector Autoregressive model

$$\kappa_{(t)} = \Phi \kappa_{(t-1)} + \Sigma Z_{(t)}$$

Li and Lee – mortality rates scenarios

Comparison of the fitted models

Property	Li and Lee	Variation I	Variation II	Kleinow
Number of parameters	802	622	592	886
Number of iterations	Above 200	Below 20	Below 10	Below 30
Identifiability problems	Standard	Requires new constrain	Requires new constrain	Requires new constrain
True identifiability constrains	Yes	No	Yes	No

Order of the models

Kleinow < Li and Lee < Variation I <	Variation II
Smallest BIC	Biggest BIC
 <i>BIC</i> : -2*log-likelihood value + penalty term	

Robustness test

Kleinow C Li and Lee C Variation I C Variation II

Forecasting through the models

Suitable forecasting process for every model

Model	K _(t)	κ _(t,i)	К ¹ _(<i>t,i</i>)	κ² _(t,i)
Li and Lee	Random walk with drift	VAR(1)		
Variation I	Random walk with drift	Multivariate random walk with drift	\$	8
Variation II	Random walk with drift	Multivariate random walk with drift	₿	₿
Kleinow	83		Random walk with common drift	mvVAR(1)

 Narrower confidence interval in the forecasted mortality rates scenarios

Conclusion

- Comparison of multi population models
- Reduced parameter number
- Models that are estimated faster
- Generation of joint scenarios for future mortality rates