

To be covered:

- Latest CMI snippets
- Drivers of recent mortality experience
- Blip or dip?
- CMI16 mortality improvement model
- · Mortality trend by socio-economic class
- Healthy lives

CMI snippets

- High age mortality
 - Working Paper 100 June 2017
 - calibration of mortality projections; close off mortality tables
 - difficult due to lack of data for ages over 100
- SAPS mortality experience for period 2009-2016
 - proposed "S3" series mortality table for consultation in 2018
- Annuitants mortality experience for period 2011-2014
 - Analysis by product type
- CMI16 mortality improvement model released
 - new model: more than a data refresh

Recent mortality improvements

Cause of death

- Deaths as a result of diseases to the circulatory system forms the majority of the improvement
- Most significant factor was reduced smoking
- Limited potential for future improvements

Source: Legal & General

-

Other reasons

- NHS spending
- Ageing population
- · Treatment rather than prevention
- Social care
- Multi morbidity
- Frailty

Clinical insight

"It's not how old you are but how you are old."

Jules Reynard

- Increasing frailty reduced resilience and increased vulnerability – needs to be recognised as a long term condition
- The more things that go wrong the greater the risk of adverse outcomes
- Need to start to manage the general condition of age rather than each separate problem

Ç

Clinical insight

05 October 2017 10

Blip or dip?

- General consensus a dip in mortality improvements (rather than blip)
- Similar pattern being seen in other countries
- But for how long? Short term? Medium term?

Factors that may impact length of dip

- Recession/ austerity
- Estimated £30 billion NHS funding gap in 2020/21
- Estimated £2 billion additional funding required in 2017 for social care
- · Economics will be a key factor

11

Other potential factors

- Medical break through
- Dementia
- Technology
- Antibiotic resistance
- Cyber attack on NHS

05 October 2017

CMI16 mortality improvement model

- New model released in March 2017
- High level structure same as previous model
 - historic (initial) rates, long term rates and transition
- Introduction of smoothing parameters to allow the user to choose level of smoothing of historic data

CMI16 mortality improvement model

- · Able to change the underlying data easily
- Change to the tapering (i.e. when rates reduce to zero)

Long term improvements by age

17

CMI16 mortality improvement model

- Change to definition of improvements (from qx to mx)
- · Risk that assumptions are unintentionally weakened

How much less valuable is a 1.5% long term rate now?

Mortality by socio-economic class

- CMI mortality improvement models use population data
- Are pension scheme members/ annuitants a select subset of the population?
- Have these people seen different mortality improvements relative to the population as a whole?
- And does it matter?

Mortality by socio-economic class

Table 2.1: Comparison of mortality improvements between the SAPS dataset and the England & Wales (E&W) general population (males, ages 65-100).

Year	E&W	SAPS (Lives)	SAPS (Amounts)	Difference (Lives)	Difference (Amounts)
2012	-0.9% ±0.7%	-0.2% ±1.9%	+1.4% ±3.9%	+0.7% ±2.0%	+2.3% ±4.0%
2013	+0.5% ±0.7%	+2.0% ±2.1%	+3.5% ±4.2%	+1.5% ±2.2%	+3.0% ±4.2%
2014	+3.7% ±0.7%	+4.8% ±2.1%	+3.3% ±4.6%	+1.1% ±2.2%	-0.4% ±4.6%
2015	-3.7% ±0.7%	-2.0% ±4.2%	-6.8% ±7.9%	+1.7% ±4.3%	-3.1% ±8.0%
Average	-0.1% ±0.4%	+1.2% ±1.4%	+0.4% ±2.7%	+1.2% ±1.4%	+0.5% ±2.7%

Source: CMI Working Paper 97

2

Mortality by socio-economic class

Annual male mortality improvement by socio-economic group

ONS data (by RGA)

Club Vita dataset

4%

3%

2%

High

Middle

1%

Low

Source: RGA analysis of ONS data

Source: Club Vita / Hymans Robertson

Institute and Faculty of Actuaries

Mortality by socio-economic class

Different datasets/ different time period of investigation produce different results and different materiality

Smaller subsets of data may affect credibility

More work to be done

Healthy lives

- Is there a super-healthy group?
- · Can an average person become super healthy?
- What rate of improvement would there need to be?
- Work undertaken by Just and WTW

25

Healthy lives - selection criteria

- Consider adults with no relevant history in their GP records (e.g. smoking, height/weight, blood pressure)
- Absence of (and no history of)
 - diabetes, cancer, heart disease, kidney disease etc.
- Presence of
 - good BMI, good socio-economic group, good cholesterol

Healthy lives

- Synthetic group of healthiest lives with no observable illness
- Elimination of chronic diseases and existing medical history by age 65
- Life expectancy of 93 years (cf. 80 years male and 83 years female)
- Long term annual rate of improvement of 1.25% is sufficient to reduce mortality of everyone to current healthiest within 100 years

27

Healthy lives

- Mortality reduction required to:
- Increase average longevity to 100 years
 Super healthy 50%
 General population 90%
- Increase average longevity to 120 years
 Super healthy 87%
 General population 99%

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].

| Institute and Faculty of Actuaries