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Source: Modelling and forecasting mortality modelling, Ph.D 
Thesis, Marius D. Pascarui (2018).
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• Mortality rates are modelled as a log bi-linear model incorporating both age 
and period effect;
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History – the Lee-Carter

• The fitting and simulation for the Lee-Carter works as follows:

1. Collect data on deaths and exposure. 2. Calculate crude death rates

3. Estimate the parameters using Maximum Likelihood

4. Project the k_t parameter and recover projected 
mortality rates
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History –  Beyond the Lee-Carter

• CMI (2017) introduced an APCI model – the model is a combination of the APC, 
CBD and Lee-Carter model.

   

Source: ICC Birmingham, The APCI model, 
a stochastic implementation, Stephen 
Richards (2017)
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• Build a framework which would make mortality model selection more 
transparent and more automated

• Aim is to equip practitioners with a tool which would:

• help better understand the model and parameter risks

• make selection between models easier

• make extending existing models easier
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What errors arise when doing mortality modelling?

- Stochastic error: the “noise” of the process under study.

- Parameter error: error in estimating the parameters.

- Model error: error in selecting the right model.

Errors

29



© 2024 Grant Thornton UK LLP.

Commercial in Confidence

This error arises even if we can perfectly estimate the parameter and the model.

For example, even if we could perfectly estimate the parameter of the model, we would not expect 
to perfectly predict the number of deaths for next year.

Stochastic error
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What happens if we fail to estimate stochastic error correctly?

Underestimation:

- Confidence intervals for predicted deaths will be too narrow, 
hence we will be overconfident.

- Risk will be underestimated and we might have potential 
financial shortfalls.

Overestimation:

- We will put in too much capital than what is needed.

Consequences of stochastic error
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This error arises if we estimate the wrong set of parameters (even if we have the correct model).

Issues in failing to estimate parameter error are similar to stochastic error (but we might also get bias).

Ideally, if we had infinite amount of data, we could perfectly estimate the parameter with no uncertainty.

In practice, since we always have a limited amount of data, we account for parameter error by accurately 
estimating the uncertainty around our parameter estimates.

Parameter error
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We can estimate uncertainty around model parameters with:

- Confidence intervals (for example using bootstrap)

- Bayesian Credible intervals.

and by propagating this error into our predictions (this is generally more straightforward in the Bayesian 
framework).

Parameter error
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- In the frequentist framework, there is a true parameter that is fixed and unknown.

- In the Bayesian framework, the parameter of interest is a random variable and therefore it has a 
distribution.

Frequentist vs Bayesian Statistics

- The distribution we assumed on the parameter of interest before 
seeing the data is called the prior distribution

- The distribution after seeing the data is called the posterior 
distribution, which will be the distribution of interest.

- Inference in Bayesian statistics is performed via obtaining sampling from the posterior distribution.

3
4
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Since we select among many set of models, there is obviously the possibility that we might select the wrong 
model.

Like before, in practice we can only select the true 
model if we had infinite amount of data.

Moreover, one could argue that there is no “true” 
model.

“all models are wrong, but some are useful”

 

Model error
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Traditionally, model error is mitigated using a model selection criterion such as AIC or BIC.

The idea is to fit many models and select the best one according to a metric, which usually has the form:

 

             m = loglikelihood(goodness of fit) – penalty(number of parameters)

The downside of this approach is that we end up selecting only one model even though other models might 
also be informative.

 

Approaches for model error
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We build a unifying framework by making model selection part of the estimation procedure. In other words, 
we treat the choice of the model to be selected just like another parameter of the model.

To perform model selection, we will use a state-of-art inference technique in Bayesian inference, Reversible 
Jump Markov Chain Monte Carlo (RJMCMC), which is used to make model selection part of the inference.

Our set of parameters is a pair (Mi, θi), where Mi is the current preferred model and θi is the current set of 
parameters (of model Mi), the RJMCMC algorithm is:

1) Propose a new model (Mi
*)

2) Re-estimate the parameters θi given the current model Mi.

Our approach for model error

38
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Iteration 1

Update model Update parameters
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Iteration 2

Update model Update parameters



© 2024 Grant Thornton UK LLP.

Commercial in Confidence

Reversible jump

41

Iteration 3

Update model Update parameters
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Iteration 4

Update model Update parameters



© 2024 Grant Thornton UK LLP.

Commercial in Confidence

Reversible jump

43

The framework can either revert 
the model to a simpler model

What happens in each iteration?

Or stay in the same 
model

Or expand to a larger 
model
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Reversible jump

What happens over many iterations?

• The framework will ‘favour’ certain models by spending more iterations on better models and fewer iterations on less desirable models

• This is different from AIC/BIC model selection which would select only one model

Favoured 
model

4
4
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To use the RJMCMC procedure, we need to define a framework for building mortality models.

In particular, we need to associate each model with a choice of parameters (and next perform inference on 
those parameters).

Ideally, the framework would encompass as many models as possible, in order to model the data as close as 
possible.

Model building framework

45
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N Y
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N Y
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Is there a period effect 
independent and/or an 
effect interacting with age?

ax+ kt ax+ f(x) kt

IND DEP
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BOTH
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To view each model as a parameter, we introduce a variable for each of the previous 4 choices:

- Whether the age effect is not linear or not.

- Whether the period effect is independent/dependent on age.

- Whether the age-dependent period effect is linear with age or not.

- Whether there is a cohort effect or not.

Model building framework

50
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- The age effect is linear.

- There is an independent period and one

 interacting with age.

- The age-period effect is linear with age.

 

- There is no cohort effect.

Example: CBD
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Example: APC
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- The age effect is nonlinear.

- There is a period effect dependent of age.

- The age-period effect is nonlinear with age.

 

- There is no cohort effect.

Example: Lee-Carter
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In each iteration, the algorithm will iterate between the possible steps:

- Update the set of parameters θ1 of the age effect.

- Update the model for the age effect, δ1.

- Update the set of parameters θ2 of the period effect.

- Update the model for the period effect, δ2.

- Update the set of parameters θ3 of the age-period effect.

- Update the model for the age-period effect, δ3.

- Update the set of parameters θ4 of the cohort effect.

- Update the model for the cohort effect, δ4.

Inference algorithm

56
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The algorithm might propose to switch from a linear age effect to a nonlinear age effect

Algorithm example
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The algorithm might choose between a period effect dependent on age or not.

Algorithm example
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The algorithm might propose to add a cohort effect or remove it.

Algorithm example
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We discuss how the profit emergence of a DB pension scheme changes based on the choice of the longevity 
model

We define profit emergence as:

Profit = Reserves (t-1) – Reserves (t) - actual cashflows (t) + investment returns(t) 

61

Application on DB pension schemes
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We model the liabilities of a large DB pension scheme as of 2014.

We compare the projected cashflows under using the CMI 2014 to the actual cashflows* for years 2015-
2021 and calculate the profit emergence each year. 

We carry sensitivities on the results assuming we had a model which was:

i) 10% more accurate than the CMI 2014

ii) 50% more accurate than the CMI 2014

Application on DB pension schemes
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Cashflows

Total contribution: 22% of salary until they retire.

A lump sum is 3 times the salary is paid to the spouse 
on death.

Deferred pension increases in line with RPI

Annual pension =  Pension salary x Pensionable service 
x Accrual rate

Accrual rate: 1/80th final salary benefit for service to 
April 1, 2016 but falls to 1/75th after that.

Half the pension paid to the spouse on death

Membership Profile 2014

Application on DB pension schemes
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Cashflow profile produced using the CMI 2014 
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n
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Discounted cashflow profile - CMI 2014

Application on DB pension schemes
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Application on DB pension schemes
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In this presentation, we have discussed:

-Longevity models, their history and what they try to capture.

-Different approaches to longevity model selection

-Our approach to longevity model selection using a Bayesian Reversible Jump

-The impact of choosing different longevity models on surplus emergence of a DB pension scheme.

Conclusion
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Thank you
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