

IFoA GIRO Conference 2024

18-20 November, ICC, Birmingham

Boosting sustainability agenda with data science

Dr. Alexey Mashechkin, Debashish Dey FIA Assoc. Prof. George Tzougas, Shubham Mehta

IFOA GIRO Conference 2024

Agenda

- Speakers
- Background
- Revamping classics
- New dimensions and products
- Challenges
- IFoA Data Science

Speakers

Speaker introductions

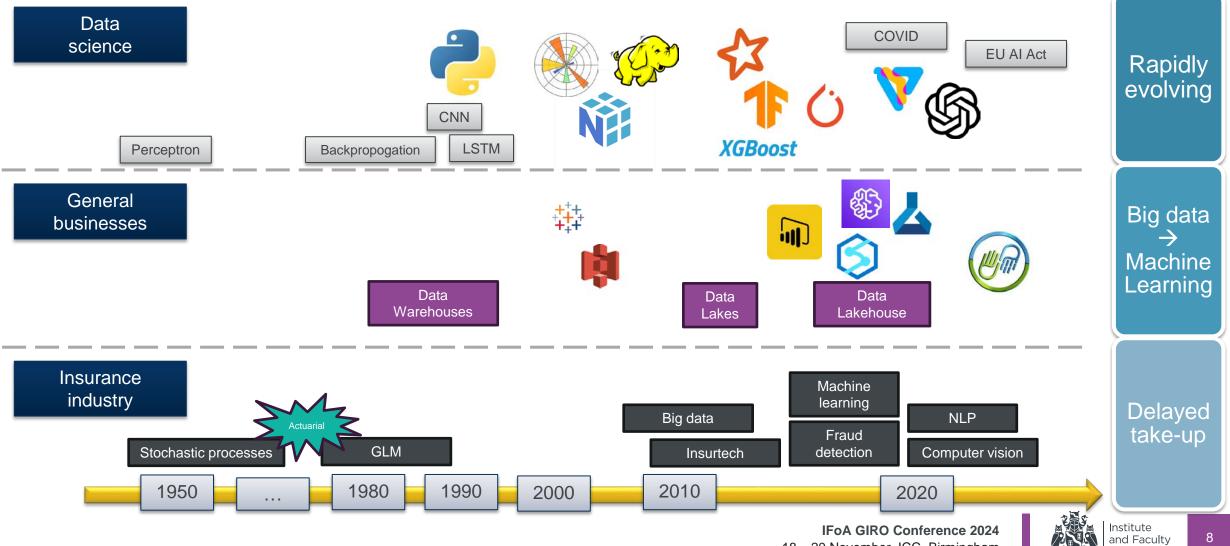
	Dr. Alexey Mashechkin	Debashish Dey FIA	Assoc. Prof. George Tzougas	Shubham Mehta
Volunteering with IFoA	✓	✓	✓	✓
- Role	Lifelong Learning Pillar Chair	Sustainability & Climate Change Working Party Co-chair (practitioners)	Sustainability & Climate Change Working Party Co-chair (academics)	Sustainability & Climate Change Working Party Member
Background				
Business		✓		
- Actuarial traditional	✓	✓		
- Actuarial non-traditional				
- Data science				
Academic focus			✓	200

Background

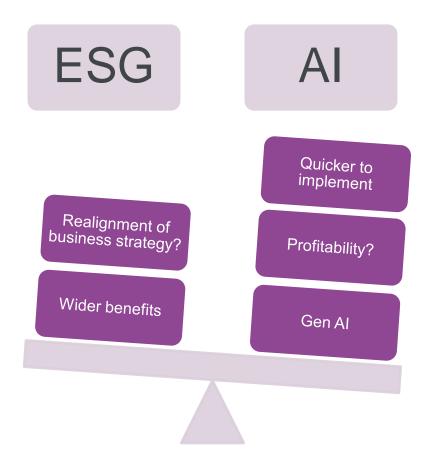
Sustainability agenda

9 INDUSTRY, INNOVATION AND INFRASTRUCTURE

10 REDUCED INEQUALITIES



GOVERNMENTS


BUSINESSES

Adoption of data science across industries

18 – 20 November, ICC, Birmingham

Conflicting goals for businesses?

Use cases within general insurance industry

Business area	Risk/Opportunities	Solutions/Techniques	Data science- ready?
Pricing	 Real-time claims & quotes Usage-based and more precise tariffication NatCat risks ESG-metrics Data bias risk 	 Utilisation of satellite images Climate-models Integrated IT solutions Big and/or external data 	✓
Reserving	Revamped portfolio segmentationNatCat risks	Individual reservingBig data	✓
Capital modelling	More complex & accurate modelling required	Enhanced predictive models	✓
Governance, Infrastructure	 ORSA / better internal compliance Streamlined IT services and connected internal databases 	 Real-time statistics Cloud solutions Enhanced models Management statistics 	
Reporting	 ESG reporting Efficient reporting e.g. Solvency 2 templates 	 Data scraping techniques Large language models Real-time management information 	

Use case: Climate-related hazards on claim frequency prediction in motor insurance

Existing models are not directly applicable to incomplete records of weather hazards and claims.

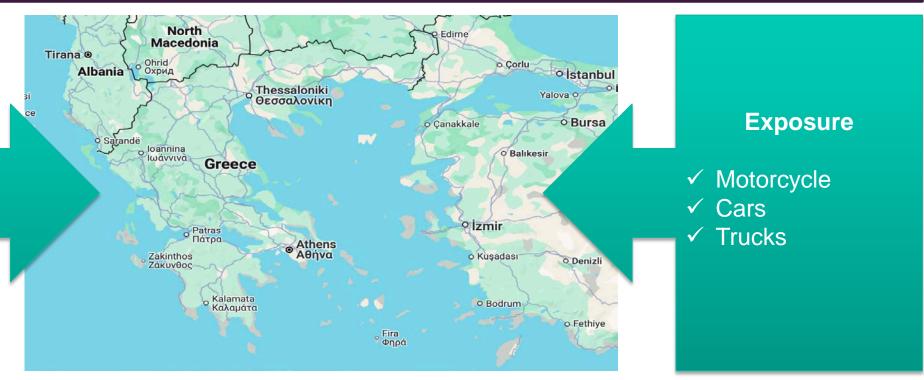
Key contribution to addressing this gap

- ✓ Novel class of predictive compound frequency models.
- ✓ Study looks at Greek motor insurance data set, documenting climate events and storm-triggered motor claims.
- ✓ The proposed modelling framework uncovers the combined distribution of storms and claims despite incomplete data.
- √ Geospatial covariates

Key finding

✓ Negative intrinsic dependence between actual storms and claim frequencies per storm.

Practical impact


✓ Offers valuable insights for the insurance sector, especially with Greece's new law mandating natural disaster vehicle insurance from 1 January 2025.

Use case: Climate-related hazards on claim frequency prediction in motor insurance

The study analyses a **Greek motor insurance dataset**, documenting **storm events and storm-triggered** claim counts across various regions of Greece over time.

Geospatial features

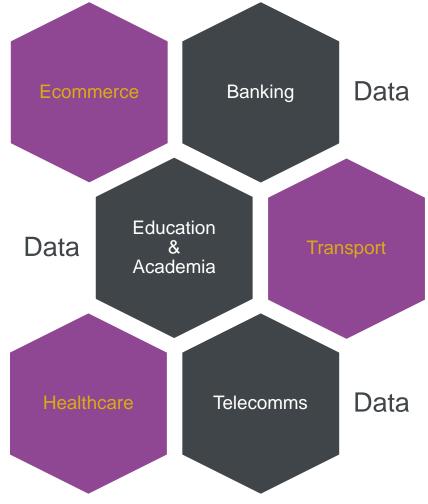
- ✓ Vulnerability
- ✓ Coast ratio
- ✓ Log alt mean
- ✓ Residential
- ✓ Industrial
- ✓ Agricultural
- ✓ Wetlands

Use case: Climate-related hazards on claim frequency prediction in motor insurance

Goal: Derive the joint distribution of (M, N), based on geospatial features x in a region over a year, using complete data (\tilde{M}, \tilde{N}) . \tilde{M} is actual number of storms $\tilde{N} = (\tilde{N}_1, \tilde{N}_2, ... \tilde{N}_{\tilde{M}})$ is the number of claims triggered per storm.

$$f_{\widetilde{M},\widetilde{N}}(\widetilde{m},\widetilde{n};x) = f_{\widetilde{M}}(\widetilde{m};x) \prod_{t=1}^{\widetilde{m}} f_{\widetilde{N}_t | \widetilde{M}}(\widetilde{n}_t;\widetilde{m},x)$$

CASE 1: INDEPENDENT


$$f_{M,N}(m,n;x) = \sum_{\widetilde{m} \geq m} {\widetilde{m} \choose m} f_{\widetilde{M}}(\widetilde{m},x) \left(f_{\widetilde{N}_t}(0;x) \right)^{\widetilde{m}-m} \left(1 - f_{\widetilde{N}_t}(0;x) \right)^m \times \sum_{\widetilde{n} \in C_n} \left(\frac{f_{\widetilde{N}_t}(\widetilde{n}_t;x)}{1 - f_{\widetilde{N}_t}(0;x)} \right)^m$$

CASE 2: DEPENDENT

$$f_{mix}(m,n;x,\boldsymbol{\Phi}_{mix,k}) = \sum_{b=1}^{B} \pi_b(x) f_{M,N}(m,n;x)$$

Outcome: Fitted compound Poisson-Poisson (PP), Negative Binomial-Negative Binomial (NN) and Negative Binomial-Poisson (NP) models. Mixture models with components were also fitted leading to 42 total models. Cross-validation used to assess predictive performance and computational burden - best-performing model being 5NN.

Take-up in other industries

Global view - positive impact of data science/Al on SDGs

Geospatial

General use cases around the world

Education

Healthcare

Banking

Predicted quantifiable impacts

97m new jobs in 26 countries

Africa +\$400m GDP by 2030

Smart cities

+40% healthcare delivery

Global +\$15.7tr GDP by 2030

Sources: The Economist, Medium, ORF, PWC, WEF

Sustainable data science solutions

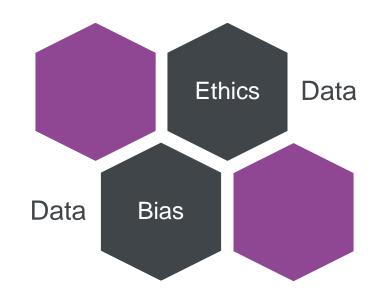
Green AI (vs Red AI)

20W

Spiking Neural Networks Sustainable Solutions

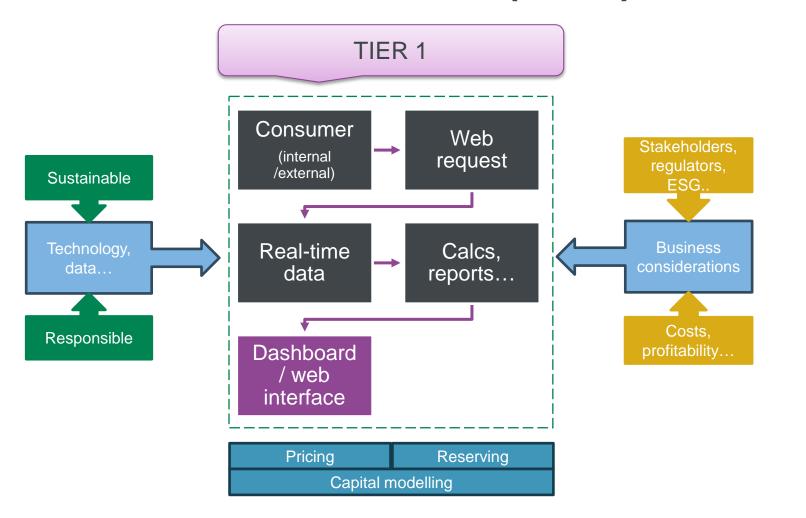
Green data centres

Green cloud
/ Cloud sustainability solutions



Responsible data science solutions

Responsible solutions



Source: Microsoft

Insurance as a service (IAAS)

BENEFITS

Customer

- ✓ Real-time quotes
- √ Cheaper quotes
- √ Secondary benefits

Insurer

- ✓ Efficiency & profitability
- ✓ Real-time management information
- ✓ Modern solution
- ✓ Better integration
- √ Ability to scale up
- ✓ Improved customer satisfaction
- ✓ Improved data quality and coverage

Regulator

- ✓Improved governance
- ✓ Access to information

Insurance as a service (IAAS)

TIER 2

Insurer-driven solutions

- ✓ Customer-centric
 - ✓ Health trackers
- ✓ ESG-metrics
- ✓ Consulting as a part of insurance products
- ✓ Protection gap reduction

Market-driven solutions

- ✓ Direct/Indirect sustainability-aligned
 - ✓ Coral reef insurance
 - ✓ Solar panel minimum annual power output insurance
- ✓ Increasing ESG regs
- ✓ Competitor pressures
- ✓ Customer and employee needs
 - ✓ Generational challenges

BENEFITS Individual ✓ Better and healthier day-to-day ✓ Inclusive work environment Society √ Healthier behaviours for both individuals and corporates ✓ Sustainable society ✓ Promotion of ESG-aligned practices and projects

Challenges of ESG integration & looking ahead

Alignment with business strategy?

Increased regulations

Rapidly evolving space – risk & opportunity

Increased **complexity** and lack of **understanding** of models

ADOPTION

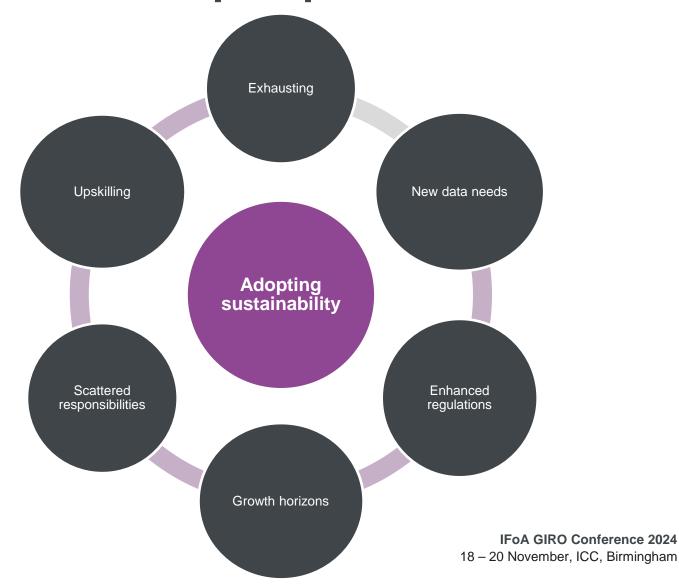
75% More underwriters considering ESG factors (Marsh)

25%

Group-wide approach
for ESG integration for
underwriters (Marsh)

GOVERNANCE

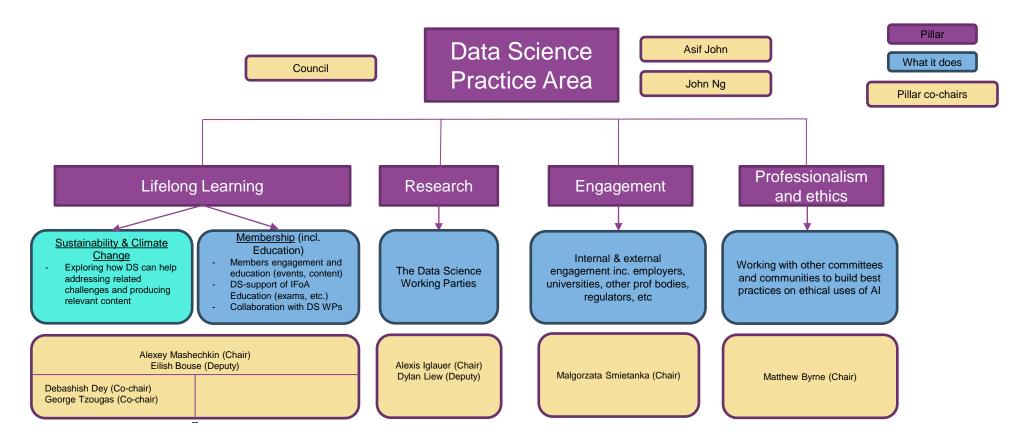
58%
Chief sustainability
officer retains
responsibility (Deloitte)

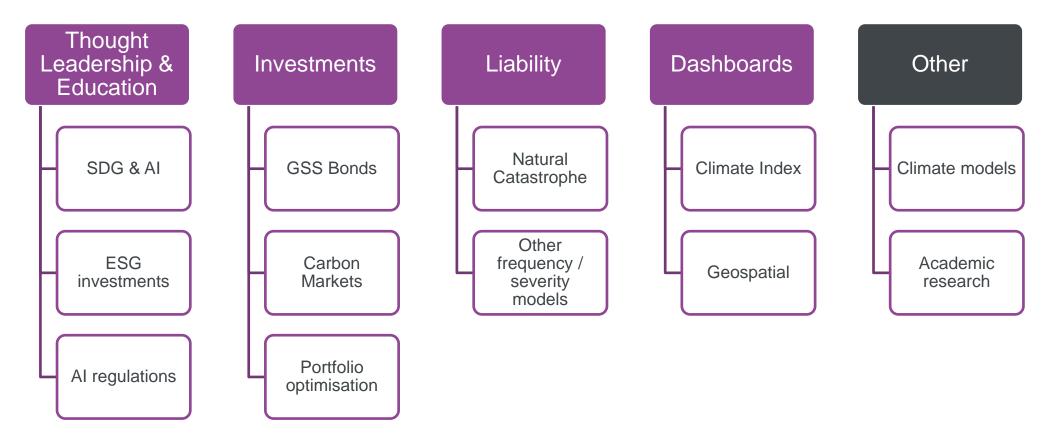

39%
Different teams
working as
internal silos (KPMG)

CHALLENGES

45%
Insufficient resources
and capacity (KPMG)

45%
Pressure from
ESG rating
agencies (Deloitte)


Insurance and actuarial perspective



IFoA Data Science

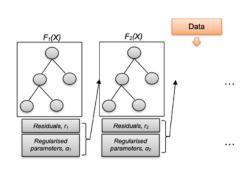
Overview of IFoA Data Science structure

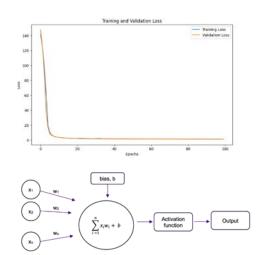
Overview of Working Party projects

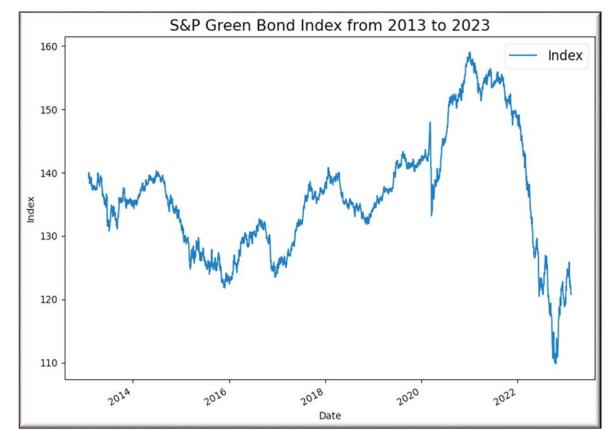
Questions

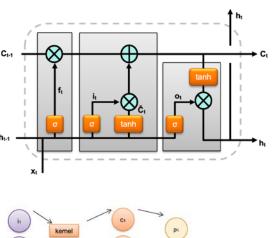
Comments

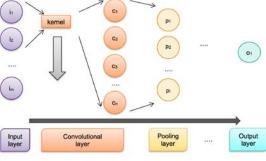
Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

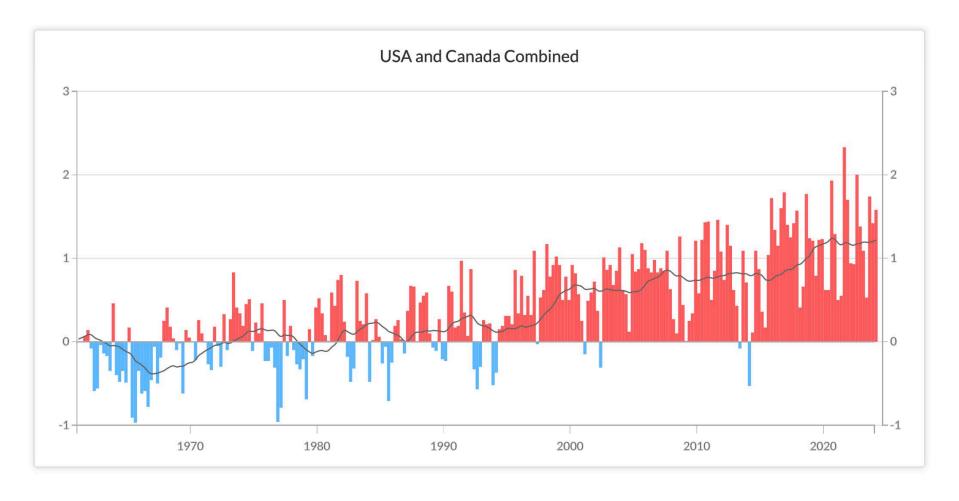

The views expressed in this presentation are those of the presenter(s).




Appendix: IFoA Data Science – useful links


- IFoA VLE homepage
 - https://vle.actuaries.org.uk/course/view.php?id=1867
- IFoA blog posts
 - https://blog.actuaries.org.uk
- IFoA life-long learning homepage
 - https://actuaries.org.uk/learn/lifelong-learning/data-science/
- Other publications
 - https://researchportal.hw.ac.uk/en/persons/george-tzougas


Appendix: Green bonds



Appendix: Actuarial index

