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Agenda

Commercial
Insurance Value
Chain

What is Al?

Latest Innovations
& Use Cases
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surance Value Chain
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The commercial insurance value chain is manual, inefficient,
expensive, complex, inconsistent

Ci | nfusing, i istent
@ Sz banbibat Aol @ 3 weeks - 3 months quotation time

O
Cw
PORTFOLIO/RISK
MANAGER
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' ce : Cr (J— > o
FINANCE / COMMERCIAL
cv c‘g Ce

LEGAL &
CLAIMS
COMPLIANCE WORDINGS HANDLER
@ Silod functions and data

Data held hostage in
spreadsheets, PDFs, legacy tech
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Traditional Operating Models

Problem Statements and Targets for Innovation

Traditional Broking

Client & Broker & Intermediaries

o

CLIENT @, Initial Client Enquiry
Broker writes proposal form

farseveral insurers, of risk
BF MNeedsassesstment details

Emails sentto multiple
insurers.

Manual underwriting via
many different legacy
platforms. Lots of re-keying
with no addedvalue.

IFoA GIRO Conference 2024
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Traditional Operating Models

Problem Statements and Targets for Innovation

Traditional Underwriting

RISK DATA

CO

Final price o Underwriting

END CUSTOMER communicatedback BROKER judgement applied
back to the customer manuallyto refine
customer price.

O
crs gm

Price calculated using
CASE actuaries ratetables

PRICING
UNDERWRITER and rating structures
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Traditional Operating Models
Problem Statements and Targets for Innovation

Product Development & Policy Wording lteration Portfolio Management

& Hundreds of Dashboards.

100S OF STATIC PAGES OF
UNSTRUCTURED DATA [El Ad hoc analysis.

New coverage bolted on as an extension
to the schedule, or additional wording to
@ Manual investigation.

the Policy Wording.
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Traditional Operating Models

Problem Statements and Targets for Innovation

Traditional Reserving

o) o) o) o]
ce ce cs o

RESERVING > RESERVING RESERVIN RESERVING

s ?
B Data Collection o Data Cleansing i Initial Reserve &= Reviews and signs Infrequent - 4x a year
Prep Estimations

Traditional Claims Handling

o o] o) o)
ca cs Cs o

> DATA COLLECTION VERIFICATIO ASSESSMEN SETTLEMENT

ON >

BB Initial contact by o Claim registration Coverace verification 21 aims Underwriting - fe Settlement, Payment
policyholder data collection verification Underwriting - extent Payment & dosure
extent of loss Closure
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Poll - Al

Which part of the insurance process would you
most like Al to improve?

a. Customizing policies to fit customer’s unique needs and
offering real-time customer support and answering
questions.

Streamlining the claims process for faster payouts.
Detecting fraud and preventing issues before they occur.

Handling everything! So we can lie on a beach, get paid, and
chill—life goals!

00T
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The Al Landscape

Artificial Intelligence

Machine Learning

Fundamental Component:
Neural Networks

Two fundamental approaches: the "D&G"

Q Dlscrlmlnatlve Al (‘traditional’ Al)

Categorizes data by identifying patterns and learning
the boundaries between different classes
* Handle typical classification and regression tasks
* Example popular model forms: KNNs, GBMs, Neural

Networks (e.g., CNNs)

‘ Generatwe Al (GenAl)

Learn to generate new contents based on training
data by capturing the underlying distribution of

training data

* Often leveraging Deep Learning models (Neural

Networks) as the foundation

IFoA GIRO Conference 2024
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Common Al pain points

5 |

Generative Al (GenAl)

D

Discriminative Al (‘traditional’ Al)
Not explainable
Can easily lead to
overfitting
Usually required large
labeled data

Hallucinations
Data Privacy Concerns
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Data Volume (in Zettabytes) Generated Annually
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Data Volume (in Zettabytes) Generated Annually
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Challenges and Opportunities

o Y,

Data Integration Complexity Enhanced Risk Insights
(Managing diverse, growing datasets) (Leverage advanced data analytics)

Legacy Systems Limitations Innovative Pricing Models
(Adapting outdated infrastructure) (Precision through ML techniques)

Skills Gap Collaboration with Data Scientists
(Upskilling in ML and coding) (Cross-disciplinary growth potential)
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Ensembles

Bagging

Different subsets of
training data

Most frequent or

average prediction

b o - =
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Ensembles

Boosting

Training set is
modified based on
predictions

R -

- - R - G
- - R - C
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Ensembles

Stacking

lefere_n-t suzsets of Different Meta-Learner
training data models

E
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Ensembles - GLM/XGB o

pred = predgyy, + predygp

pred = predgyy * predygp

github.com/actuarial-data-science/CourseDeeplLearningWithActuarialApplications/blob/master/1_glm/1_glm.pdf 18 - 20 November, ICC, Birmingham R\ ’;;
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Ensembles - GLM/XGB

pred = predgyy, + predygp

pred = predg;y, * predyg

Pinball Score shows
improvement over a

l homogenous model
D2 = Dmodet
D null
E
. . . - I IFoA GIRO Conference 2024 gﬂi&% nstitute o
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Ensembles - GLM/XGB

pred = predgyy, + predygp

pred = predg;y, * predyg

Pinball Score shows
improvement over a
homogenous model

Dmodel

D?=1—
Dnull

Model benchmarking — D?

cvi 3.6% 8.1% 12.3%
cv2 3.2% 7.0% 11.6%
cv3 3.8% 8.1% 13.0%
cv4 3.5% 7.9% 12.7%
CcV5 3.4% 7.6% 11.5%

Mean[[ | 3.5% 7.8% 12.2%
DJ*2

Folds: 3 to train; 1 to evaluate; 1 to test

github.com/actuarial-data-science/CourseDeeplLearningWithActuarialApplications/blob/master/1_glm/1_glm.pdf
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Ensembles - GLM/XGB

pred = predgyy, + predygp

pred = predg;y, * predyg

Pinball Score shows
improvement over a
homogenous model

Dmodel

D?=1—
Dnull

Model benchmarking — D?

cvi 3.6% 8.1% 12.3% 10.4% 11.5%
cv2 3.2% 7.0% 11.6% 8.8% 11.4%
cv3 3.8% 8.1% 13.0% 9.7% 12.3%
cv4 3.5% 7.9% 12.7% 9.8% 11.6%
CcV5 3.4% 7.6% 11.5% 8.5% 111%

Mean[ | 3.5% 7.8% 9.4%
DJ*2

Folds: 3 to train; 1 to evaluate; 1 to test

github.com/actuarial-data-science/CourseDeeplLearningWithActuarialApplications/blob/master/1_glm/1_gim.pdf
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Ensembles - GLM/XGB

pred = predgyy, + predygp

pred = predg;y, * predyg

Pinball Score shows
improvement over a
homogenous model

Dmodel

D?=1—
Dnull

Model benchmarking — D?

cvi 3.6% 8.1% 12.3% 10.4% 11.5% 10.2% 11.4%
cv2 3.2% 7.0% 11.6% 8.8% 11.4% 8.5% 11.0%
cv3 3.8% 8.1% 13.0% 9.7% 12.3% 10.2% 12.1%
cv4 3.5% 7.9% 12.7% 9.8% 11.6% 9.1% 11.7%
CcV5 3.4% 7.6% 11.5% 8.5% 111% 8.4% 111%

Mean[ | 3.5% 7.8% 9.4% 9.3%
DJ*2

Folds: 3 to train; 1 to evaluate; 1 to test

github.com/actuarial-data-science/CourseDeeplLearningWithActuarialApplications/blob/master/1_glm/1_gim.pdf

IFoA GIRO Conference 2024
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Another way to leverage Al in a transparent way:
penalised regressions

* Automate model creation to achieve gains in speed & performance
* Retain upsides of coefficient-based structure:

* auditability

« editability

* ease of operational deployment
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What are penalised regressions?

Standard GLM fit:

Mumber of observations —%— Observed

—&— GLM estimates == = (yerall Average
* . .
o 1000 B* = ArgMax LogLikelihood(Obs, 3)
200 3500
Full Credibility is given to the data

. 3000
£ 600
a 2500 . .
O g Estimates on low exposure segments can be volatile
Esnn ‘F N EENEEENE BERERN !  F A NN I RN EEETY N RNN] a
9 2000
g o
@ 400
8 1500
<I

300 1000

500
200
0
e R G Az, A, g % A
c Yy gy Uiy S, i L) %0g
&‘Gefe rﬁ"':'-'fbf} 7 Ben,, M %’#Jo@
&

Class codes
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What are penalised regressions?

Standard GLM fit:

Exposures —e— Observed —e— Buhlmann ==& = Qverall Average

. 4000 B* = ArgMax LogLikelihood(Obs, 3) + constraints
3500
700 2000 ¢ Partial Credibility given to the data
@ ® More robust estimates
9 600 2500 ,, ¢ Different types of constraints yield different types of
p < estimates and behaviours
g 500 2000 &
® 2
g 400 1500
>
<
300 1000
500
200
0
’YS‘ $@?' . CO 47, . 473 49 ; /)7 ko
66‘6‘0@"@ K OS?"{/ Efo 0/09 00%0?0f. 000/?0/‘@ eqoe " 9/."/'
n Qg
Class codes

18-20N ber, ICC, Birmingh y
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Penalisation regressions’ loss functions

B* = ArgMax (LL(Obs, 8;) — M\f(5;))
[ I

rewards fit close to the cost associated to the use of
observations the betas

285 | nsti
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Usual penalty terms

Penalty(B)

Impact of Penalty

2.0 A
1.5 4
1.0 4
0.5
—— Lasso
0.0 — Ridge
-1.5 -1.0 -0.5 0.0 0.5 1.0 15
Coefficient g

Estimated Coefficient j;

Comparison of B estimates

—— Ridge
—— Lasso

T T T

-2 -1 0
Observed value y;

IFoA GIRO Conference 2024
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Penalisation against a prior o

@ Exposure —#— Average Loss Cost —— Flat Prior —#— Prediction from Flat Prior

|
2
800 5000
700
4000

O 600
‘<>t’ [C)
-
3 500 3000 Z
o ~—
8 @
@0 >
S 400 3
g =3
g 2000 %
@ 300
z

200 1000

== "
Healthcare Retail Construction Mining Manufacturing Agriculture Finance Foodservices

ClassCode

IFoA GIRO Conference 2024
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Penalisation against a prior o

! Exposure —#— Average Loss Cost —#— Prior from UW —#— Prediction from UW Prior

LT
800 5000
UW prior & low exposure: the fitted loss is

s close to the value set by UW —
)
\<>£ 600 I\ -
2 6 & 3000 %
o N
S 400 3
& 2000 &
(7]
2 300

200 1000

r
100
7 - 0
Healthcare Retail Construction Mining Manufacturing Agriculture Finance Foodservices
ClassCode
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Properties of penalised regressions

Penalisation can natively deal with:

* Fitting with credibility (shrinkage)

* Variable selection (LASSO shrinkage)

* Dealing with correlations (shrinkage)

e Capturing non-linearities (LASSO on derivative)

* Interactions & Zoning (Regularisation can be extended to more than one dimension)

* Stacking models (penalisation against a prior - input or model)

X
IFoA GIRO Conference 2024 I ,;%Sig%
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For Commercial Lines

Penalisation methods help tackling common challenges in Commercial Lines:
* Small & Sparse datasets
* Need for manual adjustments into the models

* Use of model in production is straightforward

X
IFoA GIRO Conference 2024 I ,;%Sig%
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| methods
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GenAl - specific category of foundation model called €
Large Language Models (LLMs)

Prompts LLMs Completions

——
=

Value cRgme STl
“Draw me a picture of multiple actuaries O
sitting in the room and watching the
presentation Enhancing the Commercial
Insurance Value Chain with Al and

analytics” >

B dnnxlanl]U‘m'L -

i Cra s il 2

T —fy

Here is the image depicting multiple actuaries in a room
watching the presentation titled "Enhancing the
Commercial Insurance Value Chain with Al and Analytics.”
The setting captures the professional and collaborative

atmosphere you described.
Institute
and Faculty 39
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+ Ability to ingest and work with different types of data:
Text, images, audio, visual, etc.

* Inputs and outputs can both be of different modalities
(e.g. text-to-image)

* Inputs and outputs can accept multiple modalities at
the same time (e.g. a mix images and text)

18-20N ber, ICC, Birmingh by
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Large Language Models (LLMs) Traditional Approach:

Pre-trained vs Fine-tuning vs In-Context Learning

Fine-tuning:

* Supervised Fine-Tuning (SFT):
Training the pre-trained LLMs on
datasets with labels for specific

b &
tasks . “,
* Reinforcement Learning (RL): Aligns
Pre-training: model to a specific task using a i
« Foundation for the different NLP reward model In-Context Learning:
tasks, gives model an » Keywords: Supervised Fine-Tuning ¢ | et the model learn the task through
’ . (SFT), Reinforcement Learning the prompt (context) without any
understandl-ng o Ianguage Human Feedback (RLHF), Direct weight updates
* Self-supervised: by learming from Preference Optimization (DPO) * Prompt Engineering: Incorporating
vast amounts of text data

examples in prompts and/or task-
specific instructions

¢ Keywords: k-shot learning, 0-shot
learning, few-shot learning,
soft prompting/prompt tuning

generating labels from the data itself

¢ Keywords: Next Token Prediction,
Masked Token Prediction,
Entailment

18-20N ber, ICC, Birmingh R A
ovembper, , biIrmingham M
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Large Language Models (LLMs) €

Alternative - Retrieval Augmented Generations (RAG)

¢ Mechanism:

o RetrleyaI-At{gment : .LLM first retrieves content from a /Pre-Processing \
collection of information (e.g. relevant documents or |
data) that is relevant to the user’s query !
i ill th i
o After t.he retneval-augment_process, prompt will then Documents " Chunks — Embeddings
contain three parts to feed into LLM for a more accurate

response: 0 -

— The instruction guiding model to retrieved content
— The retrieved content
— The user question (original prompt)

N /Retrieval \ /Au mented Generation\
* Reduce hallucinations: 3 Top K 2
o Grounding their responses in verifiable retrieved Results
: : : o . Model )
|nfo.rmat|0.n.rather than internalized information it learned Prompt/ (LLM) Response
during training only Query
o Provide more up to date responses and information or

know when to say ‘| don’t know’ rather than making up K / K /

answers
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Large Language

RAG end-to-end process

RAG Pipeline

Pre-Processing

—
H Documents Embeddings
Retrieval Augmented Generation
— Top K
Results e
lodel
P(;ompt/ (LLM) —— Response
uery

AN
W@ LangChain

Suited for applications requiring
complex interaction and content
generation

| Llamalndex

Optimized for search and
retrieval tasks

( Single fura ] Multi turn ] [ Multi turn ] Single. turn ]
Faithfulness. Agent goal
accuracy

Source: ragas

Example package:
- ragas,
- tonic-validate,
- Ilama_index.evaluation

Models (LLMs)

Consider

Fine-Tuning LLMs?

@ s it o Teac €+ [ VectorstoreRetriover Astiover

Bake in Knawledge E:B LS
at Train Time I‘/ 'T‘ b ¢ e 3 Wi
“Closed book” ! \]EP"! 4 C!”"“‘” . w
. Mud‘e::::nus«? L > 0 Ain e
8 ev%a .
“Open book” > N A Al ks =g o
eSS b
© 4
RAFT (Proposed) 7 A @; Q cwns
Source: RAFT: Adapting Language Source: Galileo
Model to Domain Specific RAG
‘RAFT’ - Retrieval-Augmented
Fine-Tuning
I
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mercial Insurance Landscape using
S
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Rethinking the traditional data extraction process?

* Often, after receiving the policy proposal form, which is always in pdf format, underwriters have to manually type the information
into the system, this can easily lead to human errors and this process is cumbersome and manual.

* Alternatively, can leverage GenAl for possible automations:

* RAG pipeline:
* Convert the pdfs into images and save them in private storage - one image represents one page
* Inthe example below, Llamalndex was used since it’s optimized for simple retrieval tasks
* Underlying LLMs: GPT-40 for multimodality
* Design prompts carefully for each question for retrieval

* Forcomplexinformation retrieval, such as charts, better retrieval results can be achieved by cropping the target tables
from the image with necessary transformation adjustment

* Information will be then retrieved from the images, and the entire process provides greater control on data privacy

* Evaluation
®* Fine-tuning LLMs? - not needed in this case

* Deployment and Monitoring

Institute
and Faculty
of Actuaries

18 - 20 November, ICC, Birmingham »‘{‘%3

[ S

289
IFoA GIRO Conference 2024 ; i %




- ) . _ ) . '
® PY v E;;:|1no:)1r§perty professionals-proposal-form.pdf ® Q @ lﬁ ﬁ v O ® = Q

PROFESSIONAL INDEMNITY INSURANCE

PROPERTY PROFESSIONALS AND CHARTERED SURVEYORS
(EXCLUDING MARINE AND ENGINEERING), QUANTITY SURVEYORS,
AUCTIONEERS,VALUERS AND ESTATEAGENTS PROPOSAL FORM

A FULL POLICY WORDING IS AVAILABLE ON REQUEST

Please complete and tick boxes as appropriate. If there is insufficient space to provide answers to the proposal form questions, please
use the ADDITIONAL INFORMATION section at the end of the form.
In this proposal we use the term ‘Principal’ to mean any sole principal, partner, director or member of a Limited Liability Partnership.

Reference to ‘Proposer’ “You’ or “Your’ in this proposal shall include all names included under question | who will be the Insured in the
insurance policy.

Please ensure that all relevant sections of the Proposal are completed.

|. a. Name under which business is conducted: (“You')

Tuhao Zhu

b. Are you ‘Regulated by RICS’? Yes| v |No| |

2. Addresses of all of your offices & percentage of total fees in each

Wembley Park, Wembley




Future of Broking & Underwriting

Traditional

g | 2]

Emailssentto multiple
CLIENT Q  Initial Client Enquiry insurers.
Brokerwrites proposalform
for several insurers, of risk Mﬂﬂuzl\flfndernnmng\ﬂs
details many different legacy
platforms. Lotsofre-keying
withnoaddedvalue.

[0 Needsassesstment

Traditional

RISK DATA

@ S ccg . gl

communicatedb
back tothe customer nuallytarefine
customer ce.

END CUSTOMER BROKER

CASE
UNDERWRITER

High Volume &/Or Algorithmic Experience

(<]
-}
Q

cuient

Negotiation and
placement

o

Price calculated using ce
actuaries ratetab
and rating structures

PRICING

A
A >
A

s G®

Q

Based onyour businessdetails, your >
. tisk profileis.. evnen
Therefore, the followingcoverages
arerecommendedto mingate your

tisk..

an
an

Thebestinsurer and chespest price
foryour needsis...

NON-

sTANnARny

ComepLEX

2]

& o}

a Websites,images and

BROKE DIRECT video,Satellite
b cv SE'R: "E = Financial Statements,
. Loss History, Credit _
Data entry into ® i
journey fora Applications, Industry

databases, Third Parties
Q Bagigscation & Peril
Models

question set, with
automated

to capture full risk

information
DATA

Niche &/Or Human Experience

A
A >
A

Q@

Abnormal/very complex
cases go out to referral, for
for manual technical
adjustments to be made,

e additional data is

WRHi[ﬁﬁienNriterco-piloG H
) Automated decisions

- . Bind.
appetite, sanctionsand

compliance checks,

coverage limits line size

=] Business Objectives

8 Under

v

coLLECTION

STANDA

RD/

SIMPLE
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AUTOMATED
ASSESSMENT

Institute
I.ﬁ@»\ and Faculty
of Actuaries

46



Future of Wordings

Enhanced Product Innovation, Portfolio Management, Claims Validation and Exposure Modelling

Traditional

A E
100S OF STATIC

PAGES OF
UNSTRUCTURED

New coverage bolted on as an extension to
extension to the schedule, or additional
additional wording to the Policy Wording.
Wording.

B coverage
dimensions

A Coverage x

Limit
) . | T
& Peril x Exclusion )
ii
® Peril x
POLICY STRUCTURED
STRUCTURE A DEFINED
BUILDING DATA MODEL
BLOCKS

G

ﬁ Product Iteration

'é Agent Chatbot
Portfolio
Management

Dynamic,
) Tailored Quotes
q Claims Validation

ue for laptops is £15,000.00

[[D E.g. Inclusion of Specified All Risks
Risks Cover

Q] E.g."Am | covered for Non-
Damage BI?"

E.g. "What is the projected impact on
ﬂﬂﬂﬂﬂ impact on my Bl loss ratio if | added
added specified all risks cover?"

Include all dynamic policy

inputdata set = more accurate
understanding of exposure for
insurer.

E.g. no wording on a coverage if not

not chosen.

E] E.g. is this policholder
covered?

Y
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Future of Reserving
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Future of Portfolio Management

Traditional Portfolio Management Future of Portfolio Management

B Machine leaming on vast, g ranutar data

)
l‘9

© 60

3 Hundreds of Dashboards. @y Askachatbot
INSIGHTS
AND
CALIBRAT 4, Automatic analysis on 3 data universe of
ON universe of joined exposurs, claims,

wordings, enrichment and market deta
data

@ Manual ivestigation.

Jg single interfac, for all stakehoiders, with
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Summary

Main Issues in CLines

Lack of clean, standardised data
available

Inefficient and manual processes
Expensive

Legacy systems

Silo’d functions and data

Heterogenous data

@ Al Techniques

Discriminative Al
categorizes data by identifying
patterns and learning boundaries
between classes for tasks like
classification and regression.

Generative Al
generates new content by
capturing the underlying
distribution of training data, often
using deep learning models as a
foundation.

o Opportunity

Enhancing data capture, and
analyse large amounts of data at
speed.

Reducing re-keying.

Automating traditionally manual
processes.

Shifts focus to insights rather than
process delivery.

New practice areas for actuaries and
data scientists.
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Poll - post presentation

Which area of commercial insurance do you think
will see the most transformative impact from Al
and analytics in the next five years?

a. Broking

b. Underwriting

c. Product Development & Policy Wording
lteration, and Portfolio Management

d. Reserving
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Ou.

ents

members of the Institute and
re encouraged. The views
those of the presenter.
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